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Ising model
 Hamiltonian of class spins:

 Partition function:

 Its knowledge gives all equilibrium properties (interested in N→∞)

Free energy density:

Magnetization:

Energy density:

[closed form rarely known]



Ising model
 For h=0 case, Onsager’s solution:

 Phase transition occurs at singularity of free energy
(or any physical quantities derived from it):



Yang-Lee zeros
 Yang and Lee (1952): zeros of partition function & transitions

 Zeros on complex plane governs the statistical mechanics of the 
system (on positive real axis)

zeros pinch in  phase transitionszero-free  no phase transitions



Lee-Yang circle theorem

 Density of zeros g(θ) [ β=1/T dependent]  governs equilibrium properties

 Lee and Yang (1952): zeros of ferromagnetic Ising
models lie on a unit circle of complex field plane

Zeros located @

 Partition function:

 Consequence (in thermodynamic limit): 

 Partition function zeros: Alternative approach for statistical mechanics    
(but needs unphysical complex plane)



Fisher Zeros
 Generalization to zeros on complex-temperature plane by 

Fisher ’65  Fisher zeros (also Abe, Suzuki, …)

 See e.g. from McCoy, Advanced Stat Mech

P.B.C. Brascamp-Kunz 
B.C.

on 18x18 lattice



Further development of YL zeros
 Behavior of density of zeros 
 distinguish order of transitions (1st vs. 2nd)
 relations of critical exponents in higher-order transitions

 Zeros on finite system may be probed by coupling to a quantum spin 
[evolution of quantum spin will give an effective imaginary part of field] 

[B-B Wei & R-B Liu, 2012]

[Janke & Kenna ‘02, 
Janke, Johnson & Kenna ‘06]

m=2

 Experimentally measured for up to N=9 [Peng et al. 2015]



Further development of YL zeros (cont’d)
 Zeros (Yang-Lee and Fisher) of Ising model 

on diamond hierarchical Lattice

See also Talks on Tuesday 

[Derrida, De Seze & Itzykson ’83]

[Roeder, Lyubich & Bleher, arXiv ‘10 & ‘11]

[Gefen, Mandelbrot &Aharony ‘79-84]
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Tensor-Network methods
 No stranger to Stat Mech community: 

vertex model
& transfer matrix:

[figures taken from 
B. McCoy, Advanced 
Statistical Mechanics]

partition function = contraction of a 
tensor network



Other Stat-Mech Models

spin model:

face model:

vertex model: [figures taken from 
B. McCoy, Advanced 
Statistical Mechanics]



Numerical Tensor-Network methods

 Recent revival due to ideas from quantum information

 Understands why 1d DMRG works

 Generalization to 2d and higher dimensions

 Aim to overcome the issue of sign problem in 
quantum Monte Carlo method

 Some success in frustrated spin systems 
and topological order 

 Progress in 2d Hubbard model



Example tensor-network (quantum) states

 MPS=
Matrix Product States

s1 s2 sN

 e.g. DMRG [White; Verstraete, Porras & Cirac] 

 MERA=
Multiscaled Entanglement 
Renormalization Ansatz

 Can deal with scale 
invariance [Vidal]; 
AdS-CFT [Schwingle]

 Wavefunction norm square
 classical partition functionPEPS=

Projected Entangled 
Pair States

 2D generalization of MPS
[Verstraete & Cirac]



Selected activities of own interest
Detecting transition w. entanglement
[Orus, Wei, Garcia-Saez, Buershcaper, 
PRL’14]

2D Z2 symmetric SPT phases 
[Huang& Wei, arXiv ‘15]

μ

λ

SPT phases in A4 symmetric H
[Prakash, West, Wei, arXiv ‘16]

Gap of 2D AKLT models 
[Garcia-Saez, Murg & Wei, PRB‘13]



Ising partition function: tensor network

nb = # of nbrs:
2 in 1d, 4 in 2d, etc

 Turn Z to contraction of local 
weight A in vertex-like model 

 Hamiltonian of class spins

W: matrix for local Boltzmann 
weight in spin model

 Partition function

W
W (0)



How to evaluate such a tensor network?

 real-space coarse-graining or RG



HOTRG: higher-order tensor RG

 Coarse-grained one step (alternating 
horizontally and vertically subsequently):

 Coarse-grained many times  free energy

Merge 
2 sites

Truncate 
& rescale 
tensor A

also applies 
to 3d:

[Z. Xie et al.   
PRB ‘12]

~



Magnetization from HOTRG
 Ratios of two tensor-network contractions

W
W (0)

partition fcn:

W
W (0)

’ ’ ’magnetization:



Density of zeros & conjugate observables 
 Consider complex p plane (with its conjugate variable Θ)

e.g. Yang-Lee                                   ,  Fisher

 Assume zeros zn lie on a curve C with density g

C

 Density of zeros is proportional to jump of conjugate variable

(Would be interesting to consider zeros lie in extended 
region or fractal structure; see e.g. Matveev & Shrock)
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Results for zero & imaginary fields

 Compare well with Onsager’s & Yang’s results



Free-energy density & magnetization
on complex-field plane



Zeros & discontinuity in magnetization

or

 Three different regimes:
(1) T << Tc , density is essentially flat

(3) T > Tc , repulsion from real axis &
edge singularity

(2) T = Tc , density rises algebraically

2d:



@ Transition temperature T=Tc
2D 3D

vs Monte Carlo 
(evaluated on real plane):

vs δ=15 



Edge of zeros @ T>Tc

2d:

3d:

Edge θe(T)

 Zeros get pushed toward θ=π as T increases

 2D has divergence but not in 3D

 Agree w. Kortman-Griffiths [PRL’71]



Yang-Lee edge singularity at 2D

 Difficult to estimate 
accurately with TN: vs σ = -1/6 from CFT



Yang-Lee edge singularity at 2D
 Fisher [PRL ‘78]: critical φ3 Landau theory

 Cardy [PRL ‘83]: 2D case the singularity is a 
minimal model M(5,2) of conformal field theory

 Central charge c= -22/5, one nontrivial primary field 
with Δ= -2/5, hence σ= -1/6

(no divergence in 3D)
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Potts models

 2D: @h=0, ∃ 2nd order transition for q ≤ 4, 1st order for q >4
[Baxter ‘73, Nienhuis et al. PRL‘79 (using RG)]

 Kim & Creswick [PRL’98]: Yang-Lee zeros not on unit circle 
(based on finite-size results)

 Challenged by Monroe, arguing 
system too small [PRL ’99] q=3 @ T=Tc



Our results in ∞-size limit

2D Potts

 Zeros clearly NOT on unit circle r =1

3D Potts

R
ad

iu
s 

of
 z

er
os

@ T=Tc



Zeros approach unit circle asymptotically
2D at θ=π

 Examine e.g. zeros at θ=π farthest among all angles

D
ev

ia
tio

n 
fro

m
 r=

1

 Zeros approach unit circle in the limit T→0 (meaning of exponent?)



Further preliminary results

The following are some preliminary 
results with Dr. Ching-Yu Huang

 Density of Fisher zeros

 Zeros of hard hexagon model



Fisher Zeros
 From Pascal’s limaçon to two circles:

Zeros lie on



Free-energy density @ complex T

x

x
x



Density extracted from energy jump

Qualitatively agrees (but 
still needs more work) with
exact density from Lu-Wu ‘01

Angle θ along the circles:

(Fisher zeros)



Hard hexagon model

[p.458, McCoy, Advanced Stat Mech]



Attempt at hard 
hexagon model:
Particle number density

From poster of workshop 
organized by McCoy et al.



Zero density 
extracted from 
particle density jumpFrom poster of workshop 

organized by McCoy et al.



Summary
 Introduced Yang-Lee zeros & Fisher zeros

 Introduced Tensor-Network Methods

 Applied them to extract density of zeros

 Needs more work on Fisher zeros and other 
models such hard-hexagon & hard-square

 Obtain good locations of edge of zeros

 But edge singularity exponent not accurate enough

 May use more sophisticated tenor renormalization methods






