The Lamplighter Group as a Group Generated by a 2-state Automaton, and its Spectrum

Yuki Takahashi

University of California, Irvine

August 16, 2016

Outline of the talk

We consider

1. automata and automata groups
2. Lamplighter group
3. rooted regular trees and group action on them
4. Schreier graphs
5. Markov operators on Schreier graphs, and its spectra
6. spectrum of the Lamplighter group

Automata

- We consider finite invertible automata with the same input and output alphabet $\{0,1\}$.

Example

Denote the following (non-initial) automaton by A :

$$
\text { Id : } \begin{aligned}
& 0 \mapsto 0 \\
& 1 \mapsto 1
\end{aligned}, \quad \epsilon: \begin{aligned}
& 0 \mapsto 1 \\
& 1 \mapsto 0
\end{aligned}
$$

- We call $A_{q_{1}}$ and $A_{q_{2}}$ initial automata.

Examples of initial Automata

- Initial automata operate on (finite or infinite) sequences over the alphabet $\{0,1\}$.

Example

Let A be the following (non-initial) automaton:

$$
\text { Id : } \begin{aligned}
& 0 \mapsto 0 \\
& 1 \mapsto 1
\end{aligned}, \quad \epsilon: \begin{aligned}
& 0 \mapsto 1 \\
& 1 \mapsto 0
\end{aligned}
$$

Then, for example,

$$
\begin{aligned}
& A_{q_{1}}: 00000 \mapsto 11111, \quad 10100 \mapsto 01011 \\
& A_{q_{2}}: 010 \mapsto 011, \quad 01000000 \cdots \mapsto 01111111 \cdots
\end{aligned}
$$

Examples of Automata

- Automata producing the identity map on the set of strings are called trivial automata.

Example (trivial automaton)

Denote the following automaton by A :

Then, for example,

$$
A: 111111 \mapsto 111111, \quad 0100000 \cdots \mapsto 0100000 \cdots
$$

Examples of Automata

Example

- The following automaton A generates the Lamplighter group.

Note that

$$
\left.\begin{array}{ll}
A_{a}\left(0 x_{1} x_{2} \cdots\right) & =1 A_{a}\left(x_{1} x_{2} \cdots\right), \\
A_{b}\left(0 x_{1} x_{2} \cdots\right) & =0 A_{a}\left(x_{1} x_{2} \cdots\right),
\end{array} A_{b}\left(1 x_{1} x_{2} \cdots\right)=0 A_{b}\left(x_{1} x_{2} \cdots\right)=1 A_{b}\left(x_{1} x_{2} \cdots\right)\right)
$$

Composition of automata

- For any two initial automata A_{q} and B_{s}, joining the output of A_{q} with the input of B_{s} one gets a map which corresponds to an initial automaton $C_{q, s}$.
- We call $C_{q, s}$ the composition of A_{q} and A_{s}, and denote it by $A_{q} \star B_{s}$.

Composition of automata

Example

Denote the following automaton by A.

Then, for example, $10000 \mapsto 01111 \mapsto 10000$. Therefore,

$$
A_{q} \star A_{q}=\mathrm{Id}
$$

Equivalence of initial automata

- Two initial automata are called equivalent if they determine the same map on the set of strings.

Example

Denote the following automata by A :

Then $A_{q_{1}}$ is equivalent to the trivial automaton.

Groups generated by automata

- The classes of equivalence of initial automata over the alphabet $\{0,1\}$ constitute a group which is called the finite automata group.

Let A be a non-initial automaton, and let $Q=\left\{q_{1}, q_{2}, \cdots, q_{\ell}\right\}$ be the set of states of A. Then, the group $G(A)=\left\langle A_{q_{1}}, \cdots, A_{q_{\ell}}\right\rangle$ is called the group generated by A.

Reminder: the following automaton generates the Lamplighter group:

Remarks

- The study of automata groups led to the solution of a number of important problems in group theory (Burnside problem, Milnor problem, Atiyah problem, Day problem, Gromov problem, etc).
- The original definition of the Lamplighter group is $\left(\oplus_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}\right) \rtimes \mathbb{Z}$. It can also be written as $\mathbb{Z} / 2 \mathbb{Z} \imath \mathbb{Z}$.
- In general, it is not an easy task to recognize the group generated by a given automaton.
- A full classification of all automaton groups defined by automata with given number of states m and size of the alphabet k has been achieved only for $m=k=2$. For the next smallest case $m=3$ and $k=2$ only a partial classification was obtained.

Rooted 2-regular tree

Consider the following rooted 2-regular tree:

- Denote by X the set of infinite rays joining the root vertex to infinity.
- Write the set of vertices of the n-th level as X_{n}.

Then, any finite automata group G acts on X and X_{n} in the natural way.

Action of G on X and X_{n}

- Let $\delta_{n}: X_{n+1} \rightarrow X_{n}$ be the map given by deleting the last letter in each word. Define $\tilde{\delta}_{n}: X \rightarrow X_{n}$ in a similar way.
Then, δ_{n} and $\tilde{\delta}_{n}$ are surjective G-equivariant map, that is,

$$
\begin{array}{ll}
g \delta_{n}(x)=\delta_{n}(g x) & \left(g \in G, x \in X_{n}\right) \\
g \tilde{\delta}_{n}(x)=\delta_{n}(g x) & (g \in G, x \in X)
\end{array}
$$

Action of G on X and X_{n}

The following diagram commutes, and δ_{n} and $\tilde{\delta}_{n}$ are surjective G-equivariant map.

Schreier graphs

Let G be a group generated by a finite symmetric set S (S being symmetric means $S=S^{-1}$) which acts on a set Y. The Shreier graph Y can be defined by:

- the vertex set of the Schreier graph is Y
- the edge set is $S \times Y$
- for $s \in S$ and $y \in Y$, the edge (s, y) connects y to sy.

Example of a Schreier graph

Example (Schreier graph $Y=\{1,2,3,4\}$)

Let G be the dihedral group D_{8}, and let Y be the set $\{1,2,3,4\}$. Let $S=\left\langle\sigma, \sigma^{-1}, \tau\right\rangle$, where $\sigma=(1234)$ and $\tau=(24)$.

Markov operator and adjacency operator

The Markov operator on a Schreier graph Y is the operator

$$
\begin{gathered}
M: \ell^{2}(Y) \rightarrow \ell^{2}(Y) \\
(M f)(y)=\frac{1}{|S|} \sum_{s \in S} f(s y) .
\end{gathered}
$$

Similarly, the adjacency operator A is defined by

$$
(A f)(y)=\sum_{s \in S} f(s y)
$$

Example of an adjacency operator

- Let $G=D_{8}, Y=\{1,2,3,4\}$ and $S=\left\langle\sigma, \sigma^{-1}, \tau\right\rangle$.

Note that $\ell^{2}(Y)$ is isomorphic to \mathbb{R}^{4}. Therefore,

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Spectra of Schreier graphs

- Denote by $\operatorname{Sp}(T)$ the spectrum of a self-adjoint operator T.

Let G be a group generated by a finite symmetric set S, and assume that G acts on sets Y and \widetilde{Y}, and $\delta: \widetilde{Y} \rightarrow Y$ be a surjective G-equivalent map.

Then we have

$$
\operatorname{Sp}\left(M_{Y}\right) \subseteq \operatorname{Sp}\left(M_{\tilde{Y}}\right)
$$

where M_{Y} and $M_{\widetilde{Y}}$ are the Markov operators on the Schreier graphs Y and \widetilde{Y}, respectively.

The Lamplighter group G and its symmetric set S

Reminder: the following automaton generates the Lamplighter group G:

Denote G_{a}, G_{b} simply by a, b, respectively. Let $S=\left\{a, b, a^{-1}, b^{-1}\right\}$.

Action of G on X_{n} and G

- Recall that G acts on the rooted regular tree X, and also on the set of vertices of the n-th level X_{n}. It is known that action on X_{n} is transitive.
- Also, G acts on itself by left multiplication (left regular representation).
- Therefore, one can consider the spectrum of the Schreier graph G (which is precisely what we want to do! :)).

Nested sequence of spectra

Reminder: the following diagram commutes, and δ_{n} and $\tilde{\delta}_{n}$ are surjective G-equivariant map.

$$
\begin{aligned}
& X_{0} \stackrel{\delta_{0}}{\tilde{\delta}_{1}} X_{1} \stackrel{\delta_{1}}{\leftrightarrows} X_{2} \stackrel{\delta_{2}}{\tilde{\delta}_{0}} \\
& \tilde{\delta}_{X}
\end{aligned}
$$

Therefore, we have

$$
S p\left(X_{0}\right) \subseteq \operatorname{Sp}\left(X_{1}\right) \subseteq \operatorname{Sp}\left(X_{2}\right) \subseteq \cdots
$$

How to compute $S p(G)$?

The following holds:

Theorem (L. Bartholdi \& R. Grigorchuk, '00)

We have

$$
\overline{\bigcup_{n \geq 0} S p\left(X_{n}\right) \subseteq S p(G) ~}
$$

- We want to show that $\operatorname{Sp}(G)=[-1,1]$.
- By the above theorem, it is enough to show that

$$
\overline{\bigcup_{n \geq 0} S p\left(X_{n}\right)}=[-1,1]
$$

A little bit more detail...

- Since X is uncountable, the action of G on X cannot be transitive.

Let $\xi \in X$ be an infinite ray.

Denote the orbit of ξ by X_{ξ}.

- The following diagram commutes:

Therefore, we have

$$
\operatorname{Sp}\left(X_{0}\right) \subseteq \operatorname{Sp}\left(X_{1}\right) \subseteq \operatorname{Sp}\left(X_{2}\right) \subseteq \cdots \subseteq \operatorname{Sp}\left(X_{\xi}\right)
$$

so

$$
\overline{\bigcup_{n \geq 0} S p\left(X_{n}\right)} \subseteq \operatorname{Sp}\left(X_{\xi}\right)
$$

In fact they coincide. By $\operatorname{Sp}\left(X_{\xi}\right)=\operatorname{Sp}(G)$, we have

$$
\overline{\bigcup_{n \geq 0} S p\left(X_{n}\right)} \subseteq S p(G)
$$

A tiny little bit more detail...

- Denote the stabilizer of of the ray ξ by P (parabolic subgroup).
- The parabolic subgroup P is cyclic, or trivial.
- Since G acts on X_{ξ} transitively, this action is equivalent to the action of G on G / P.
- Therefore, we have

$$
\operatorname{Sp}\left(X_{0}\right) \subseteq \operatorname{Sp}\left(X_{1}\right) \subseteq \operatorname{Sp}\left(X_{2}\right) \subseteq \cdots \subseteq \operatorname{Sp}\left(X_{\xi}\right)=\operatorname{Sp}(G / P)
$$

The Lamplighter group

Reminder: the following automaton generates the Lamplighter group.

Recall that

$$
\begin{array}{ll}
a\left(0 x_{1} x_{2} \cdots\right)=1 a\left(x_{1} x_{2} \cdots\right), & a\left(1 x_{1} x_{2} \cdots\right)=0 b\left(x_{1} x_{2} \cdots\right) \\
b\left(0 x_{1} x_{2} \cdots\right)=0 a\left(x_{1} x_{2} \cdots\right), & b\left(1 x_{1} x_{2} \cdots\right)=1 b\left(x_{1} x_{2} \cdots\right)
\end{array}
$$

Operator recursion

$$
\begin{array}{ll}
a\left(0 x_{1} x_{2} \cdots\right)=1 a\left(x_{1} x_{2} \cdots\right), & a\left(1 x_{1} x_{2} \cdots\right)=0 b\left(x_{1} x_{2} \cdots\right) \\
b\left(0 x_{1} x_{2} \cdots\right)=0 a\left(x_{1} x_{2} \cdots\right), & b\left(1 x_{1} x_{2} \cdots\right)=1 b\left(x_{1} x_{2} \cdots\right)
\end{array}
$$

Recall that G acts on X_{n}. Let a_{n}, b_{n} be the matrices corresponding to the action of a and b on X_{n}, respectively. Then we have

$$
a_{n}=\left(\begin{array}{cc}
0 & a_{n-1} \\
b_{n-1} & 0
\end{array}\right), \quad b_{n}=\left(\begin{array}{cc}
a_{n-1} & 0 \\
0 & b_{n-1}
\end{array}\right) .
$$

Spectrum of X_{n}

- Note that the spectrum of X_{n} is the set of eigenvalues of the matrix

$$
a_{n}+b_{n}+a_{n}^{-1}+b_{n}^{-1}
$$

Theorem (R. Grigorchuk \& A. Z̈uk, '01)

We have

$$
\operatorname{Sp}\left(a_{n}+b_{n}+a_{n}^{-1}+b_{n}^{-1}\right)=\left\{4 \cup 4 \cos \left(\frac{p}{q} \pi\right): 1 \leq p<q \leq n+1\right\} .
$$

Computation of the spectra (1)

Let us introduce the following matrix:

$$
S_{n+1}=\left(\begin{array}{cc}
0 & I d_{2^{n}} \\
I d_{2^{n}} & 0
\end{array}\right) .
$$

Define

$$
\Phi_{n}\left(x_{1}, x_{2}\right)=\operatorname{det}\left(a_{n}+b_{n}+a_{n}^{-1}+b_{n}^{-1}-x_{1} \operatorname{Id}_{2^{n}}-x_{2} S_{n}\right),
$$

where x_{1} and x_{2} are complex parameters.

- The same method also works for the first Grigorchuk group, the Hanoi Towers group, the tangled odometers group, etc etc...

Computation of the spectra (2)

We then obtain a recursive expression of the form

$$
\Phi_{n}\left(x_{1}, \cdots, x_{d}\right)=P_{n}\left(x_{1}, \cdots, x_{d}\right) \Phi_{n-1}\left(F\left(x_{1}, \cdots, x_{d}\right)\right),
$$

where P_{n} is a polynomial function and $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a rational function.

In our case,
$P_{n}\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)^{2^{n}}$ and $F\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}+\frac{2}{x_{2}-x_{1}},-\frac{2}{x_{2}-x_{1}}\right)$.
Therefore, we have

$$
\Phi_{n+1}\left(x_{1}, x_{2}\right)=\left(x_{2}-x_{1}\right)^{2^{n}} \Phi_{n}\left(x_{1}+x_{2}+\frac{2}{x_{2}-x_{1}},-\frac{2}{x_{2}-x_{1}}\right) .
$$

Computation of the spectra (3)

So,

$$
\Phi_{n}\left(x_{1}, x_{2}\right)=\operatorname{det}\left(a_{n}+b_{n}+a_{n}^{-1}+b_{n}^{-1}-x_{1} \operatorname{Id}_{2^{n}}-x_{2} S_{n}\right)
$$

satisfies

$$
\Phi_{n}\left(x_{1}, x_{2}\right)=P_{n}\left(x_{1}, x_{2}\right) \Phi_{n-1}\left(F\left(x_{1}, x_{2}\right)\right),
$$

where P_{n} is a polynomial function and $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a rational function.

- If the point $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ is in the zero set of $\Phi_{n-1}\left(x_{1}, x_{2}\right)$ then any point in $F^{-1}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ is in the zero set of $\Phi_{n}\left(x_{1}, x_{2}\right)$.
- Therefore, describing the joint spectrum leads us to consider iterations of the rational map F.

Computation of the spectra (4)

- We then find semi-conjugacy from the 2-dimensional rational function F to a polynomial function f in a single variable, that is,

$$
\psi\left(F\left(x_{1}, x_{2}\right)\right)=f\left(\psi\left(x_{1}, x_{2}\right)\right) .
$$

- Then, since we have

$$
\psi\left(F^{m}\left(x_{1}, x_{2}\right)\right)=f^{m}\left(\psi\left(x_{1}, x_{2}\right)\right)
$$

the iterations of F are related to the iterations of f and then the desired spectrum is described through the iterations of f.

In our case,

$$
\psi\left(x_{1}, x_{2}\right)=x_{1}+x_{2}, \quad \text { and } f \text { is the identity. }
$$

Computation of the spectra (5)

Therefore, denoting

$$
x_{1}^{\prime}=x_{1}+x_{2}+\frac{2}{x_{2}-x_{1}}, \quad x_{2}^{\prime}=-\frac{2}{x_{2}-x_{1}},
$$

we have

$$
\Phi_{n+1}\left(x_{1}, x_{2}\right)=\left(x_{2}-x_{1}\right)^{2^{n}} \Phi_{n}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \quad \text { and } \quad x_{1}^{\prime}+x_{2}^{\prime}=x_{1}+x_{2} .
$$

- Since

$$
x_{2}^{\prime}-x_{1}^{\prime}=-\left(x_{1}+x_{2}\right)-\frac{4}{x_{2}-x_{1}}
$$

one only needs to consider the iteration of the map

$$
g: x \mapsto-\left(x_{1}+x_{2}\right)-\frac{4}{x}
$$

Computation of the spectra (6)

- Denote $(\underbrace{g \circ g \circ \cdots \circ g}_{n})\left(x_{2}-x_{1}\right)$ by P_{k} / Q_{k}.

Lemma (R. Grigorchuk \& A. Z̈uk, '01)

We have

$$
\Phi_{n}\left(x_{1}, x_{2}\right)=\left(4-x_{1}-x_{2}\right) \prod_{k=1}^{n}\left(\frac{P_{k}\left(x_{1}, x_{2}\right)}{Q_{k}\left(x_{1}, x_{2}\right)}\right)^{2^{n-k}}
$$

Computation of the spectra (7)

Write $x_{1}=4 \cos z$ for $z \in[0, \pi]$.
Then we get

$$
\begin{aligned}
& \operatorname{det}\left(a_{n}+b_{n}+a_{n}^{-1}+b_{n}^{-1}-x_{1} \operatorname{Id}_{2^{n}}\right)=\Phi_{n}\left(x_{1}, 0\right) \\
= & (4-4 \cos z)\left(\frac{1}{\sin z}\right)^{2^{n-1}} 2^{n} \prod_{k=2}^{n}(\sin (z k))^{2^{n-k}} \sin (z(n+1)) .
\end{aligned}
$$

This proves that

$$
S p\left(a_{n}+b_{n}+a_{n}^{-1}+b_{n}^{-1}\right)=\left\{4 \cup 4 \cos \left(\frac{p}{q} \pi\right): 1 \leq p<q \leq n+1\right\}
$$

Thank you! :)

