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Outline of the talk

We consider

1. automata and automata groups

2. Lamplighter group

3. rooted regular trees and group action on them

4. Schreier graphs

5. Markov operators on Schreier graphs, and its spectra

6. spectrum of the Lamplighter group
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Automata

We consider finite invertible automata with the same input and
output alphabet {0, 1}.

Example

Denote the following (non-initial) automaton by A:

0

Idε

0, 1
1

q1 q2

Id :
0 7→ 0
1 7→ 1

, ε :
0 7→ 1
1 7→ 0

We call Aq1 and Aq2 initial automata.
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Examples of initial Automata

Initial automata operate on (finite or infinite) sequences over the
alphabet {0, 1}.

Example

Let A be the following (non-initial) automaton:

0

Idε

0, 1
1

q1 q2

Id :
0 7→ 0
1 7→ 1

, ε :
0 7→ 1
1 7→ 0

Then, for example,

Aq1 : 00000 7→ 11111, 10100 7→ 01011

Aq2 : 010 7→ 011, 01000000 · · · 7→ 01111111 · · ·
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Examples of Automata

Automata producing the identity map on the set of strings are called
trivial automata.

Example (trivial automaton)

Denote the following automaton by A:

Id

0, 1

Then, for example,

A : 111111 7→ 111111, 0100000 · · · 7→ 0100000 · · · .
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Examples of Automata

Example

The following automaton A generates the Lamplighter group.

1

Idε

0

a b

0

1

Note that

Aa(0x1x2 · · · ) = 1Aa(x1x2 · · · ), Aa(1x1x2 · · · ) = 0Ab(x1x2 · · · )
Ab(0x1x2 · · · ) = 0Aa(x1x2 · · · ), Ab(1x1x2 · · · ) = 1Ab(x1x2 · · · )
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Composition of automata

For any two initial automata Aq and Bs , joining the output of Aq

with the input of Bs one gets a map which corresponds to an initial
automaton Cq,s .

We call Cq,s the composition of Aq and As , and denote it by Aq ? Bs .
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Composition of automata

Example

Denote the following automaton by A.

ε

0, 1

q

Then, for example, 10000 7→ 01111 7→ 10000. Therefore,

Aq ? Aq = Id.
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Equivalence of initial automata

Two initial automata are called equivalent if they determine the same
map on the set of strings.

Example

Denote the following automata by A:

0

εId

0, 1
1

q1 q2

Then Aq1 is equivalent to the trivial automaton.
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Groups generated by automata

The classes of equivalence of initial automata over the alphabet
{0, 1} constitute a group which is called the finite automata group.

Let A be a non-initial automaton, and let Q = {q1, q2, · · · , q`} be the set
of states of A. Then, the group G (A) = 〈Aq1 , · · · ,Aq`〉 is called the group
generated by A.

Reminder: the following automaton generates the Lamplighter group:

1

Idε

0

a b

0

1
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Remarks

The study of automata groups led to the solution of a number of
important problems in group theory (Burnside problem, Milnor
problem, Atiyah problem, Day problem, Gromov problem, etc).

The original definition of the Lamplighter group is (⊕ZZ/2Z) o Z. It
can also be written as Z/2Z o Z.

In general, it is not an easy task to recognize the group generated by
a given automaton.

A full classification of all automaton groups defined by automata with
given number of states m and size of the alphabet k has been
achieved only for m = k = 2. For the next smallest case m = 3 and
k = 2 only a partial classification was obtained.

Yuki Takahashi (UC Irvine) August 16, 2016 11 / 37



Rooted 2-regular tree

Consider the following rooted 2-regular tree:

...

0 1

00 01 10 11

Denote by X the set of infinite rays joining the root vertex to infinity.

Write the set of vertices of the n-th level as Xn.

Then, any finite automata group G acts on X and Xn in the natural way.
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Action of G on X and Xn

...

0 1

00 01 10 11

Let δn : Xn+1 → Xn be the map given by deleting the last letter in
each word. Define δ̃n : X → Xn in a similar way.

Then, δn and δ̃n are surjective G -equivariant map, that is,

gδn(x) = δn(gx) (g ∈ G , x ∈ Xn)

g δ̃n(x) = δn(gx) (g ∈ G , x ∈ X )
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Action of G on X and Xn

The following diagram commutes, and δn and δ̃n are surjective
G -equivariant map.

X0

X

X1 X2

· · ·

δ0 δ1 δ2

δ̃0
δ̃1 δ̃2
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Schreier graphs

Let G be a group generated by a finite symmetric set S (S being
symmetric means S = S−1) which acts on a set Y . The Shreier graph Y
can be defined by:

the vertex set of the Schreier graph is Y

the edge set is S × Y

for s ∈ S and y ∈ Y , the edge (s, y) connects y to sy .
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Example of a Schreier graph

Example (Schreier graph Y = {1, 2, 3, 4})
Let G be the dihedral group D8, and let Y be the set {1, 2, 3, 4}. Let
S = 〈σ, σ−1, τ〉, where σ = (1234) and τ = (24).

1

τ

2 3

4

τ

τ

τ

σ

σ

σ

σ

σ−1

σ−1

σ−1

σ−1
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Markov operator and adjacency operator

The Markov operator on a Schreier graph Y is the operator

M : `2(Y )→ `2(Y )

(Mf )(y) =
1

|S |
∑
s∈S

f (sy).

Similarly, the adjacency operator A is defined by

(Af )(y) =
∑
s∈S

f (sy).
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Example of an adjacency operator

Let G = D8, Y = {1, 2, 3, 4} and S = 〈σ, σ−1, τ〉.

1

τ

2 3

4

τ

τ

τ

σ

σ

σ

σ

σ−1

σ−1

σ−1

σ−1

Note that `2(Y ) is isomorphic to R4. Therefore,

A =


1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 0

 .
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Spectra of Schreier graphs

Denote by Sp(T ) the spectrum of a self-adjoint operator T .

Let G be a group generated by a finite symmetric set S , and assume that
G acts on sets Y and Ỹ , and δ : Ỹ → Y be a surjective G -equivalent
map.

Then we have
Sp(MY ) ⊆ Sp(M

Ỹ
),

where MY and M
Ỹ

are the Markov operators on the Schreier graphs Y

and Ỹ , respectively.
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The Lamplighter group G and its symmetric set S

Reminder: the following automaton generates the Lamplighter group G :

1

Idε

0

a b

0

1

Denote Ga,Gb simply by a, b, respectively. Let S = {a, b, a−1, b−1}.
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Action of G on Xn and G

...

0 1

00 01 10 11

Recall that G acts on the rooted regular tree X , and also on the set
of vertices of the n-th level Xn. It is known that action on Xn is
transitive.

Also, G acts on itself by left multiplication (left regular
representation).

Therefore, one can consider the spectrum of the Schreier graph G
(which is precisely what we want to do! :)).
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Nested sequence of spectra

Reminder: the following diagram commutes, and δn and δ̃n are surjective
G -equivariant map.

X0

X

X1 X2

· · ·

δ0 δ1 δ2

δ̃0
δ̃1 δ̃2

Therefore, we have

Sp(X0) ⊆ Sp(X1) ⊆ Sp(X2) ⊆ · · ·
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How to compute Sp(G )?

The following holds:

Theorem (L. Bartholdi & R. Grigorchuk, ’00)

We have ⋃
n≥0

Sp(Xn) ⊆ Sp(G ).

We want to show that Sp(G ) = [−1, 1].

By the above theorem, it is enough to show that⋃
n≥0

Sp(Xn) = [−1, 1].
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A little bit more detail...

Since X is uncountable, the action of G on X cannot be transitive.

Let ξ ∈ X be an infinite ray.

...

0 1

00 01 10 11

ξ

Denote the orbit of ξ by Xξ.
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The following diagram commutes:

X0

Xξ

X1 X2

· · ·

δ0 δ1 δ2

δ̃0
δ̃1 δ̃2

Therefore, we have

Sp(X0) ⊆ Sp(X1) ⊆ Sp(X2) ⊆ · · · ⊆ Sp(Xξ),

so ⋃
n≥0

Sp(Xn) ⊆ Sp(Xξ).

In fact they coincide. By Sp(Xξ) = Sp(G ), we have⋃
n≥0

Sp(Xn) ⊆ Sp(G ).
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A tiny little bit more detail...

...

0 1

00 01 10 11

ξ

Denote the stabilizer of of the ray ξ by P (parabolic subgroup).

The parabolic subgroup P is cyclic, or trivial.

Since G acts on Xξ transitively, this action is equivalent to the action
of G on G/P.

Therefore, we have

Sp(X0) ⊆ Sp(X1) ⊆ Sp(X2) ⊆ · · · ⊆ Sp(Xξ) = Sp(G/P).
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The Lamplighter group

Reminder: the following automaton generates the Lamplighter group.

1

Idε

0

a b

0

1

Recall that

a(0x1x2 · · · ) = 1a(x1x2 · · · ), a(1x1x2 · · · ) = 0b(x1x2 · · · )
b(0x1x2 · · · ) = 0a(x1x2 · · · ), b(1x1x2 · · · ) = 1b(x1x2 · · · )

Xn :
Xn+1 :
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Operator recursion

Xn :
Xn+1 :

a(0x1x2 · · · ) = 1a(x1x2 · · · ), a(1x1x2 · · · ) = 0b(x1x2 · · · )
b(0x1x2 · · · ) = 0a(x1x2 · · · ), b(1x1x2 · · · ) = 1b(x1x2 · · · )

Recall that G acts on Xn. Let an, bn be the matrices corresponding to the
action of a and b on Xn, respectively. Then we have

an =

(
0 an−1

bn−1 0

)
, bn =

(
an−1 0

0 bn−1

)
.
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Spectrum of Xn

Note that the spectrum of Xn is the set of eigenvalues of the matrix

an + bn + a−1n + b−1n .

Theorem (R. Grigorchuk & A. Z̈uk, ’01)

We have

Sp(an + bn + a−1n + b−1n ) =

{
4 ∪ 4 cos

(
p

q
π

)
: 1 ≤ p < q ≤ n + 1

}
.

Yuki Takahashi (UC Irvine) August 16, 2016 29 / 37



Computation of the spectra (1)

Let us introduce the following matrix:

Sn+1 =

(
0 Id2n

Id2n 0

)
.

Define

Φn(x1, x2) = det(an + bn + a−1n + b−1n − x1Id2n − x2Sn),

where x1 and x2 are complex parameters.

The same method also works for the first Grigorchuk group, the
Hanoi Towers group, the tangled odometers group, etc etc...
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Computation of the spectra (2)

We then obtain a recursive expression of the form

Φn(x1, · · · , xd) = Pn(x1, · · · , xd)Φn−1(F (x1, · · · , xd)),

where Pn is a polynomial function and F : Rd → Rd is a rational function.

In our case,

Pn(x1, x2) = (x1− x2)2
n

and F (x1, x2) =

(
x1 + x2 +

2

x2 − x1
,− 2

x2 − x1

)
.

Therefore, we have

Φn+1(x1, x2) = (x2 − x1)2
n
Φn

(
x1 + x2 +

2

x2 − x1
,− 2

x2 − x1

)
.
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Computation of the spectra (3)

So,
Φn(x1, x2) = det(an + bn + a−1n + b−1n − x1Id2n − x2Sn)

satisfies
Φn(x1, x2) = Pn(x1, x2)Φn−1(F (x1, x2)),

where Pn is a polynomial function and F : R2 → R2 is a rational function.

If the point (x ′1, x
′
2) is in the zero set of Φn−1(x1, x2) then any point

in F−1(x ′1, x
′
2) is in the zero set of Φn(x1, x2).

Therefore, describing the joint spectrum leads us to consider
iterations of the rational map F .
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Computation of the spectra (4)

We then find semi-conjugacy from the 2-dimensional rational function
F to a polynomial function f in a single variable, that is,

ψ(F (x1, x2)) = f (ψ(x1, x2)).

Then, since we have

ψ(Fm(x1, x2)) = f m(ψ(x1, x2)),

the iterations of F are related to the iterations of f and then the
desired spectrum is described through the iterations of f .

In our case,

ψ(x1, x2) = x1 + x2, and f is the identity.
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Computation of the spectra (5)

Therefore, denoting

x ′1 = x1 + x2 +
2

x2 − x1
, x ′2 = − 2

x2 − x1
,

we have

Φn+1(x1, x2) = (x2 − x1)2
n
Φn

(
x ′1, x

′
2

)
and x ′1 + x ′2 = x1 + x2.

Since

x ′2 − x ′1 = −(x1 + x2)− 4

x2 − x1
,

one only needs to consider the iteration of the map

g : x 7→ −(x1 + x2)− 4

x
.
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Computation of the spectra (6)

Denote (g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
n

)(x2 − x1) by Pk/Qk .

Lemma (R. Grigorchuk & A. Z̈uk, ’01)

We have

Φn(x1, x2) = (4− x1 − x2)
n∏

k=1

(
Pk(x1, x2)

Qk(x1, x2)

)2n−k
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Computation of the spectra (7)

Write x1 = 4 cos z for z ∈ [0, π].

Then we get

det(an + bn + a−1n + b−1n − x1Id2n) = Φn(x1, 0)

= (4− 4 cos z)

(
1

sin z

)2n−1

2n
n∏

k=2

(sin(zk))2
n−k

sin(z(n + 1)).

This proves that

Sp(an + bn + a−1n + b−1n ) =

{
4 ∪ 4 cos

(
p

q
π

)
: 1 ≤ p < q ≤ n + 1

}
.
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Thank you! :)
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