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Introduction

Some Results from Statistical Physics

Statistical physics deals with properties of many-body systems. Description of such
systems uses a specified form for the interaction between the dynamical variables. An
example is magnetic systems, where the dynamical variables are spins located at sites of
a regular lattice Λ; these interact with each other by an energy function called a
Hamiltonian H.

Simple example: a model with integer-valued (effectively classical) spins σi = ±1 at
sites i on a lattice Λ, with Hamiltonian

H = −JI

∑

eij

σiσj − H
∑

i

σi

where JI is the spin-spin interaction constant, eij refers to a bond on Λ joining sites i
and j, and H is a possible external magnetic field. This is the Ising model.

Let T denote the temperature and define β = 1/(kBT ), where
kB = 1.38 × 10−23 J/K = 0.862 × 10−4 eV/K is the Boltzmann constant.
Consider a many-body system at thermal equilibrium at a temperature T .



A useful function in the description of this system is the partition function, which
involves a sum over all of the possible spin configurations of e−βH:

Z =
∑

σi

e−βH =
∑

σi

exp[KI

∑

eij

σiσj + hI

∑

i

σi]

where KI = βJI and hI = βH . If JI > 0 (i.e., ferromagnetic, FM), the spin-spin
interaction favors parallel spin configurations, while if JI < 0 (antiferromagnetic,
AFM), this interaction favors configurations in which neighboring spins are antiparallel.
An external H favors σ to be in the direction of H .

Consider a regular d-dimensional lattice Λ. Define the thermodynamic limit as the limit
in which the number of lattice sites n → ∞ and the volume of this lattice goes to
infinity. In this limit, we define the reduced dimensionless free energy (per site) as

f = lim
n→∞

1

n
lnZ

The Gibbs free energy (per site) G(T,H) = −kBTf . The function f (or equiv. G)
encodes much information about the system; partial derivatives yield various
thermodynamic functions. For example,

∂f

∂β
= −U,

∂f

∂h
= M,

etc., where U = internal energy and M = magnetization (per site).



Phase Transitions

If H = 0 (i.e. no external magnetic field), the Hamiltonian is invariant under a global
Z2 symmetry group containing the identity and the spin reversal operation,
σi → −σi ∀ i. The presence of H 6= 0 breaks this symmetry explicitly.

On the infinite (thermodynamic) limit of a regular lattice of dimension d ≥ 2, at
sufficiently low temp. T , the zero-field (H = 0) Ising FM has a phase transition as T
decreases below a certain value, Tc, involving spontaneous symmetry breaking (SSB) of
the Z2 symmetry associated with the onset of ferromagnetic long-range order, i.e., a
nonzero net magnetization. The high-temp., Z2-symmetric phase is the paramagnetic
(PM) phase with M = 0, while the low-temp. phase with SSB of Z2 is the FM phase
with M 6= 0.

If J < 0, then, depending on lattice Λ, there may also be a phase transition from the
high-temp. PM phase to a low-temp. phase with AFM long-range order.

Thermodynamic functions behave nonanalytically as T passes through Tc; for example,
in the Ising FM, the magnetization M is identically zero if T > Tc and is a nonzero
function for 0 ≤ T < Tc.

G(T, 0) was calculated in closed form for the H = 0 Ising model on the square
lattice by Onsager in 1944 and later for other 2D lattices (triangular, honeycomb, etc.),



but it has never been calculated for regular lattices with d ≥ 3. For H 6= 0,
G(T,H) has never been calculated for regular lattices with d ≥ 2.

Zeros of Partition Function

Up to a prefactor, the Ising model partition function is a polynomial in the variables
y = e2KI and µ = e2hI . An interesting question concerns the locations of the zeros
of Z in the complex y plane for a given µ and in the complex µ plane for a given y.
(We will also use the equivalent variable v = y − 1.)

Consider the zeros in the y plane for H = 0, i.e., µ = 1. As n → ∞, there is
usually a merging of zeros to form curves. For example, for the square lattice, these are
two circles of radius

√
2 (M. Fisher, 1965):

|y ± 1| =
√
2

This locus of curves is invariant under (i) complex conjugation, since the coefficients of
each term in y are real; (ii) inversion, y → 1/y, reflecting a K → −K symmetry on
a bipartite lattice, and (iii) y → −y, reflecting the even vertex degree (coordination
number).

These curves cross the real axis at yPM−FM =
√
2 + 1 and

yPM−AFM = 1/yPM−FM =
√
2 − 1, defining three physical phases in this

square-lattice Ising model:
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Figure 1: Locus By in the y = e2KI = eK plane for the q = 2 Potts model (= Ising model) on the square lattice.



1. PM: yPM−AFM ≤ y < yPM−FM , i.e., 0.414 < y < 2.414

2. FM: y > yPM−FM , i.e., y > 2.414

3. AFM: 0 ≤ y < yPM−AFM , i.e., 0 ≤ y < 0.414

These physical phases have complex-y extensions as bounded by the curves
|y ± 1| =

√
2.

Special points:

1. The point y = 1 (v = 0), i.e., K = 0 ⇔ infinite temp., β = 0.

2. The point y = ∞ (v = ∞), i.e., K = ∞ ⇔ T = 0 with J > 0 (FM sign of
coupling).

3. The point y = 0 (v = 0), i.e., K = −∞ ⇔ T = 0 with J < 0 (AFM sign of
coupling)

There are also two crossings at complex-temperature points, −(
√
2 ± 1). The circles

intersect each other at two complex-conjugate multiple points, y = ±i.

The y → −y symmetry is incorporated via a conformal mapping to the variable
η = y2. In this variable, the image of the two circles is a limaçon-type curve that
crosses the real η axis at ηPM−FM = 3 + 2

√
2,

ηPM−AFM = 1/ηPM−FM = 3 − 2
√
2, and η = −1.
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Figure 2: Locus Bη in the η plane for the q = 2 Potts model (= Ising model) on the square lattice.



(Matveev and Shrock, J. Phys. A28, 1557-1583 (1995)). One can also carry out this
study of zeros and their accumulation sets B in the n → ∞ limit for other lattices.
We have done this for a number of different lattices (see refs. at end of Lecture 2).

Just as one learns more about functions of a real variable by considering their extension
to functions of a complex variable, so also it is worthwhile to consider the
complex-temperature extensions of physical phases. Although zeros usually merge to
form algebraic curves, we showed that they do not always do this; for the 4-8-8
heteropolygonal lattice (vertex-transitive tiling of the plane with regular squares and
octagons), they merge to form areas, which cross the real z axis at points (V. Matveev
and R. Shrock, J. Phys. A 28, 5235-5256 (1995)).

For H 6= 0, it is also of interest to consider zeros of Z in the µ plane. T. D. Lee and
C. N. Yang initiated this study in 1952 and showed that in the FM (but not AFM) case,
the zeros of the Ising model partition function in the µ plane occur on arcs of the unit
circle |µ| = 1. On regular lattices, in the limit n → ∞, these merge to form a
continuous (self-conjugate) arc Bµ on this circle.

For T = ∞, these are all at µ = −1; on lattices where there is a PM-FM phase
transition, as T decreases toward Tc, the arcs move out from µ = −1 and pinch the
positive real µ axis at µ = 1 as T decreases below Tc. They remain on this closed



unit circle |µ| = 1 for 0 ≤ T < Tc. For much of our discussion below, we will take
H = 0.

One may generalize the analysis by considering the model on a graph G which is not
necessarily a regular lattice. Here G = G(V,E), where V is the set of vertices (=
sites) and E is the set of edges (= bonds). The number of vertices is denoted
n = n(G) = |V | and the number of edges as e(G) = |E|. The number of disjoint
components of G is k(G).

We will also be interested in families of graphs that can be defined iteratively
(recursively), such as (i) line graphs with n vertices; (ii) circuit graphs Cn with n
vertices, (iii) ladder graphs, (iv) strips of regular lattices of length Lx vertices and
width Ly vertices, etc. with various longitudinal and transverse boundary conditions
(free, periodic, twisted periodic (Möbius), Klein-bottle).

Other families of graphs of interest are hierarchical graphs, e.g., Sierpinski, Diamond
Hierarchical (DHL), such that the (m + 1)’th member of a family is derived from the
m’th by a specified operation. Work by P. Bleher, M. Lyubich, R. Roeder for DHL ...



Potts Model Partition Function, Tutte Polynomial, and
Special Cases

An important further generalization in statistical mechanical spin models is as follows:
in the Ising model, the variable σi can take on two values. In the above formulation,
these are ±1, and equivalently, they could be enumerated as 1,2. In the Potts model,
the integer-valued variables located at each site on the lattice can take on q values
rather than just two: σi ∈ {1, ..., q}, with the Hamiltonian

H = −J
∑

eij

δσiσj

The Potts model partition function is then (with K = βJ)

Z =
∑

{σi}
e−βH =

∑

{σi}
e
K

∑

eij
δσiσj =

∑

{σi}

∏

eij

e
Kδσiσj

where δσiσj
is the Kronecker delta. Here the spin-spin energy function takes on the two

values 0 and J (in conventional Ising formulation, ±JI). The q = 2 Potts model is
thus equivalent to the Ising model with J = 2JI . The J > 0 and J < 0 cases define
the Potts ferromagnet (FM) and antiferromagnet (AFM).



On the (thermodynamic limit of) 2D lattices, the Potts model has a continuous
order-disorder phase transition for q = 2, 3, 4 with known critical exponents
(universality classes). For general q, the Gibbs free energy G(T, 0) of the Potts model
has never been calculated exactly (in closed form) even for H = 0 on any regular
lattice with d ≥ 2.

One can reexpress the Potts model partition function on a graph G as a sum over
contributions from spanning subgraphs of G without explicit reference to the sum over
spin configurations. Define v = y − 1, so 0 ≤ v < ∞ for the FM case and
−1 ≤ v ≤ 0 for the AFM case.

Def. A spanning subgraph G′ of G is G′ = (V,E′) with E′ ⊆ E, i.e., it has the
same vertices and a subset of the edges of G. (Recall y = eK.) Observe that

e
Kδσiσj = 1 + (eK − 1)δσiσj

= 1 + vδσiσj

So Z =
∑

{σi}
∏

eij
(1 + vδσiσj

). This can be reexpressed as

Z(G, q, v) =
∑

G′⊆G

qk(G′)ve(G′)

where k(G′) = no. of connected components in G′ and e(G′) = no. of edges in G′.



If G is the disjoint union G = G1 ∪ G2, then
Z(G, q, v) = Z(G1, q, v)Z(G2, q, v) so, without loss of generality, we can take G
to be connected.

The (Fortuin-Kastelyen) cluster representation shows that Z(G, q, v) is a polynomial
in q and v with positive integer coefficients for each term. Further, it allows one to
generalize q from nonnegative integers to real (or complex) numbers.

The proof of this cluster formula is based on the 1-1 correspondence between the terms
in Z =

∑

{σ}
∏

eij
(1 + vδσiσj

) and spanning subgraphs G′ ⊆ G.

Sketch of proof, using, as illustration, G = C3, where Cn is the circuit graph with n
vertices. Here

Z(C3, q, v) =
∑

{σi}

∏

eij

(1 + vδσiσj
) =

∑

{σi}
(1 + vδσ1σ2)(1 + vδσ2σ3)(1 + vδσ3σ1)

There are four types of terms that contribute:

• the term 1, corresponding to the G′ with three disjoint vertices, no edges, (so
e(G′) = 0, k(G′) = 3), for which the sum over the σi’s yields q

3, i.e., one can
choose the σ’s independently in q3 ways;





• v(δσ1σ2 + δσ2σ3 + δσ3σ1), corresponding to the three G′s with one edge and one
disjoint vertex, so e(G′) = 1, k(G′) = 2. The first of these terms contributes if
σ1 = σ2; here one chooses σ1 = σ2 in any of q ways, and then σ3 independently
in any of q ways, for a total of q2 ways; similarly for the other two terms, so these
terms contribute 3q2v;

• v2(δσ1σ2δσ2σ3 + δσ2σ3δσ3σ1 + δσ3σ1δσ1σ2), corresponding to G′s with two edges,
so e(G′) = 2, k(G′) = 1. For the first term to contribute, all of the σ’s must be
equal, and there are q ways of choosing them; similarly for the other two terms, so
the total contribution is then 3qv2;

• v3(δσ1σ2δσ2σ3δσ3σ1), corresponding to G′ = G, with all edges present, so
e(G′) = 3, k(G′) = 1. For this term to contribute, all of the σ’s must be equal,
amounting to q possibilities, and yielding the term qv3.

So combining all of these terms, one gets Z(C3, q, v) = q3 + 3q2v + 3qv2 + qv3,
which is precisely

∑

G′⊆C3
qk(G′)ve(G′).

One can also express these terms in the form Z(C3, q, v) = (q + v)3 + (q − 1)v3.

By the same methods, one obtains Z(Cn, q, v) = (q + v)n + (q − 1)vn for
general n.



Here we define two important graph-theoretic polynomials:

Def. The chromatic polynomial P (G, q) is the number of ways of assigning q colors to
the vertices of G such that no two adjacent vertices have the same color. This is called
a proper q-coloring of (the vertices of) G. The minimum number of colors needed for a
proper q-coloring of G is the chromatic number, χ(G).

In the antiferromagnetic Potts model, consider the limit T → 0, so K → −∞ (since
K = βJ and J < 0) and v = eK − 1 → −1. In this limit, the only spin
configurations that contribute to Z(G, q, v = −1) are those for which adjacent spins
have different values. Hence, the T = 0 limit of the Potts antiferromagnet partition
function is the chromatic polynomial:

Z(G, q,−1) = P (G, q)

Def. The Tutte (also called Tutte-Whitney) polynomial of a graph G is

T (G,x, y) =
∑

G′⊆G

(x − 1)k(G
′)−k(G)(y − 1)c(G

′)

where c(G′) denotes the number of (linearly independent) cycles in G′. Note that
c(G) = e(G) + k(G) − n(G).



The Potts model partition function is equivalent to the Tutte polynomial. Let

x = 1 +
q

v
, y = v + 1 = eK,

so q = (x− 1)(y − 1) and v = y − 1. Then, using the fact that n(G′) = n(G),
so c(G′) = e(G′) + k(G′) − n(G), we have

T (G,x, y) = (x − 1)−k(G)
∑

G′⊆G

(x − 1)k(G
′)(y − 1)c(G

′)

= (x − 1)−k(G)
∑

G′⊆G

(

q

v

)k(G′)

ve(G′)+k(G′)−n(G)

= (x − 1)−k(G)(y − 1)−n(G)
∑

G′⊆G

qk(G′)ve(G′)

= (x − 1)−k(G)(y − 1)−n(G)Z(G, q, v)

i.e., with x − 1 = q/v and y − 1 = v,

Z(G, q, v) = (q/v)k(G)vn(G)T (G,x, y)



This equivalence between Z(G, q, v) and T (G, x, y) is an important connection
between statistical mechanics and mathematical graph theory. The Tutte polynomial
encodes much information about a graph.

Special valuations of T (G,x, y) count various types of subgraphs of G. Setting
x = 1 in T (G,x, y) restricts the G′s that contribute to those that are connected,
i.e., k(G′) = k(G) = 1. Setting y = 1 restricts the G′s that contribute to those
having no cycles, so that c(G′) = 0.

Def. A connected graph with no cycles is a tree. Setting x = y = 1 picks out G′s
that are connected spanning subgraphs with no cycles, i.e., spanning trees. So

T (G, 1, 1) = NST (G)

Def. A spanning subgraph G′ with no cycles is a spanning forest of G. One can relax
the restriction on connectedness by setting x = 2, so that (x − 1)k(G

′)−k(G) = 1,
independent of k(G′). Then

T (G, 2, 1) = NSF (G)

where NSF (G) is the number of spanning forests of G.



One can keep the restriction on connectedness but include G′s with cycles by setting
y = 2; then (y − 1)c(G

′) = 1 independent of c(G′). Hence

T (G, 1, 2) = NCSSG(G)

where NCSSG is the number of connected spanning subgraphs of G.

If one sets x = y = 2, then the summand is just 1, so this counts all of the spanning
subgraphs of G. This is enumerated by noting that all of the vertices are present, but
each edge may be present or absent, a 2-fold choice. So

T (G, 2, 2) = NG′⊆G = 2e(G)

Special cases of the Tutte polynomial yield many graph-theoretic functions of interest.



We will focus on one of these special cases here, namely the chromatic polynomial
P (G, q). We have shown that for v = −1, Z(G, q, v) is equal to this polynomial,
i.e., Z(G, q,−1) = P (G, q). Now v = −1 means y = 0 and x = 1 − q, so,
using the Z − T relation,

P (G, q) = (−q)k(G)(−1)n(G)T (G,x = 1 − q, y = 0)

Graph coloring has long been of interest in mathematical graph theory; early work by
Birkhoff and Whitney, subsequent work by Tutte, Read, and many others.

The chromatic polynomial is of interest not just in graph theory but also in applied
mathematics and engineering. One application is the following frequency allocation
problem. Consider n radio broadcast transmitter stations; let each of these be
represented by a vertex of a graph G and define two transmitters as being adjacent
(joined by a edge) if they are closer than a certain distance to each other. Then assign
frequencies from a set of q values to these transmitters, subject to the condition that
adjacent stations should use different frequencies to avoid interference. The number of
ways of doing this is P (G, q).



Some Easy Cases

We mention some cases of graphs and/or values of q, v, where the calculation of
Z(G, q, v) or P (G, q) = Z(G, q,−1) is easy.

At q = 0, since k(G′) ≥ 1, all terms vanish and hence Z(G, 0, v) = 0. Since Z is
a polynomial, this means that Z(G, q, v) always has an overall factor of q.

At v = 0 (i.e., β = 0, infinite temperature), all terms in the cluster formula with
e(G′) ≥ 1 vanish, and the only term that remains is for the G′ consisting of n
disjoint vertices, En (the “empty” graph), so Z(G, q, 0) = qn. The same result
holds for any v if G itself is En.

At q = 1, in the Hamiltonian form, the Kronecker delta functions δσiσj
= 1 for all

edges eij, since all σ′s have the same value, and hence, with y = eK,

Z(G, 1, v) = ye(G) = (v + 1)e(G)

As v → ∞ (infinitely strong ferromagnetic coupling J or T → 0 for finite J > 0, so
K → ∞), all spins prefer to be aligned, so Z(G, q, v) → qye(G) = q(v + 1)e(G).



Def. The complete graph Kn is the graph with n vertices such that each pair of
vertices is connected by an edge (so e(Kn) =

(n
2

)

).

Then by a simple combinatoric argument, P (Kn, q) =
∏n−1

j=0 (q − j).

This follows since one uses one color for the first vertex, which can be chosen in any of
q ways; then one must use a different color for the second vertex, which can be chosen
in any of q − 1 ways, and so forth up to the n’th vertex. So, e.g.,
P (K3, q) = q(q − 1)(q − 2). In general, χ(Kn) = n.

Def. A loop is an edge that connects a vertex to itself. Thus this vertex is adjacent to
itself via such a loop. Since adjacent vertices must have different colors in a proper
q-coloring of the vertices of G, this is not possible if G contains any loops, and hence
P (G, q) vanishes identically if G contains one or more loops.

If and only if G is bipartite, i.e., G = G1

⊕

G2, where each vertex in G1 has only
adjacent vertices in G2 and vice versa, then P (G, 2) = 2, since there are two ways to
perform a proper 2-coloring of G. Iff G is k-partite, then P (G, k) = k!; e.g.,
triangular lattice is tripartite: P (tri, 3) = 3!.

Corresponding results hold for T (G,x, y).



Calculational Methods

Let G− e denote the graph G with the edge e deleted and let G/e denote the graph
G with the edge e deleted and the two vertices which it connected identified, i.e., G
contracted on the edge e. Z(G, q, v) satisfies a deletion-contraction relation (DCR),

Z(G, q, v) = Z(G − e, q, v) + vZ(G/e, q, v)

This can be seen from the Hamiltonian representation of Z(G, q, v) and is equivalent
to the identity (for e = eij) exp(Kδσiσj

) = 1 + vδσiσj
; there are two possibilities:

the two σ’s on the vertices joined by the edge e are (i) different, in which case Z is the
same as if this edge were removed, corresponding to the 1; or (ii) the σ’s are the same,
which is accounted for by the vδσiσj

term in the above identity.

For example, consider G = C4, with Z(C4, q, v) = (q + v)4 + (q − 1)v4. Now,
for any edge e, C4 − e = T4, and Z(T4, q, v) = q(q + v)3. Contracting on e gives
C4/e = C3, and Z(C3, q, v) = (q + v)3 + (q − 1)v3. The RHS of the DCR is
then

Z(T4, q, v) + vZ(C3, q, v) = q(q + v)3 + v
[

(q + v)3 + (q − 1)v3
]

which equals (q + v)4 + (q − 1)v4 = Z(C4, q, v), the LHS of the DCR.



From the DCR for Z(G, q, v), there follows a DCR for P (G, q) = Z(G, q,−1):

P (G, q) = P (G − e, q) − P (G/e, q)

i.e., P (G− e, q) = P (G, q) + P (G/e, q). This has a combinatoric interpretation:
labelling the two vertices connected by the edge e as vi and vj, this relation expresses
the fact that in the proper q-coloring of H = G − e, if the colors assigned to vi and
vj are denoted color(vi) and color(vj), then there are precisely two (disjunct)
possibilities:

1. color(vi) 6= color(vj), which is equivalent to the situation in which there is an
edge connecting these vertices (since this requires that these colors be different), as
enumerated by P (G, q), and

2. color(vi) = color(vj), which is equivalent to the situation in which these vertices
are the same, as enumerated by P (G/e, q).



There is a corresponding DCR for T (G,x, y). For En, T (En, x, y) = 1. Def.: an
edge in G is a bridge iff removing it increases the number of components, k. If e = eb
is a bridge, T (G − eb, x, y) = xT (G/eb, x, y); if e = eℓ is a loop, then
T (G − eℓ, x, y) = yT (G/eℓ, x, y). If e is not a bridge or a loop, then

T (G,x, y) = T (G − e, x, y) + T (G/e, x, y)

For example, again consider the circuit graph C4, for which
T (C4, x, y) = x + x2 + x3 + y, C4 − e = T4, and T (T4, x, y) = x3;
C4/e = C3, and T (C3, x, y) = x + x2 + y. The RHS of the DCR is then
x3 + (x + x2 + y), which is equal to the LHS.

By the use of the DCR, one can calculate Z(G, q, v) in terms of the Z’s of graphs
with one less edge, namely G − e and G/e, the latter of which also has one less
vertex. One can use the DCR iteratively to calculate Z(G, q, v) in terms of smaller
graphs. Similar comment for T (G,x, y).



Some Simple Examples

We next give some simple examples of calculation of Z(G, q, v), T (G,x, y), and
P (G, q):

Denote a tree graph with n vertices as Tn. Since e(Tn) = n − 1, one has
T (Tn, x, y) = xn−1. Then, since k(Tn) = 1 and n(Tn) = n, one can use the
Z − T relation to calculate Z(Tn, q, v) as follows (with x = 1 + (q/v))

Z(Tn, q, v) = (q/v)vn T (Tn, x, y) = qvn−1
(

1 +
q

v

)n−1

= q(q + v)n−1

Illustration of use of DCR to obtain this: T2 − e = E2 = • • and
T2/e = T1 = E1 = •, so with Z(En) = qn,

Z(T2) = Z(E2) + vZ(E1) = q2 + vq = q(q + v)

Iterating, we get (with Tn − e = Tn−1 • and Z(Tn−1 •) = Z(Tn−1)Z(•))

Z(Tn) = Z(Tn−1)Z(E1) + vZ(Tn−1) = (q + v)T (Tn−1) = q(q + v)n−1



Note that for n ≥ 4, there is more than one different tree graph; for example, for
n = 4, there are two such graphs: the path graph L4 and the star graph, S4 (a
central vertex with three outer vertices connected to it). As this shows, although
T (G,x, y) and Z(G, q, v) encode information about a graph, two different graphs
can have the same T (G,x, y) and Z(G, q, v).

For a circuit graph Cn, we have shown that Z(Cn, q, v) = (q + v)n + (q − 1)vn.
Using x − 1 = q/v and q = (x − 1)(y − 1), we can write this as

Z(Cn, q, v) = vn
[(

1 +
q

v

)n

+ (q − 1)
]

= vn
[

xn + (q − 1)
]

= (q/v)vn
[xn + (q − 1)

x − 1

]

and hence we have

T (Cn, x, y) =
[xn + (xy − y − x)

x − 1

]

where C1 is a single vertex with loop, so T (C1, x, y) = y.

N.B.: The factor 1/(x − 1) is always cancelled so that T (Gm, x, y) is a polynomial
in x and y.



For n ≥ 2, using (xn − x)/(x − 1) =
∑n−1

j=1 xj, one can write T (Cn, x, y) as

T (Cn, x, y) =
(

n−1
∑

j=1

xj
)

+ y

Setting v = −1 in the results for Z(G, q, v) yields P (G, q). For example,

P (Tn, q) = q(q − 1)n−1

P (Cn, q) = (q − 1)n + (q − 1)(−1)n = q(q − 1)Dn(q)

where

Dn(q) =
n−2
∑

j=0

(−1)j
(

n − 1

j

)

qn−2−j

so D2 = 1, D3 = q − 2, D4 = q2 − 3q + 3, etc.



Using the deletion-contraction relation, one progressively reduces the number of edges
in the graphs that enter into the calculation. However, for an arbitrary graph, using the
DCR does not reduce the complexity of the calculation since, in general, at each step
one is doubling the number of terms, leading to an exponential increase in the time of
the calculation with e(G).

In Lecture 2, we will consider some families of graphs for which the DCR can be used to
calculate Z(G, q, v) obtaining new exact results.



Partition Function Zeros and their Accumulation Sets as
n → ∞

Just as the zeros of Z(G, q, v) in the plane of the temperature-dependent variable v,
or equivalently, y = v + 1, for fixed q, and their accumulation set in the n → ∞
limit, denoted Bv, are of interest, so also the zeros of Z(G, q, v) in the complex q
plane for fixed v, and their continuous accumulation set Bq, are of interest. Specific
important case: zeros of the chromatic polynomial, P (G, q), called chromatic zeros.

We have calculated (i) Z(G, q, v) for general q and v (equivalently, T (G, x, y)) and
(ii) P (G, q) for a variety of families of graphs for arbitrarily large n and have studied
the limit n → ∞. We denote this limit on a particular family of graphs, e.g., lattice
strip graphs with fixed width Ly, arbitrary length Lx, and a given set of boundary
conditions, as {G} and the resultant functions (i) f and (ii) W as f({G}, q, v) and
W ({G}, q).



In particular, for T = 0 Potts AFM, W ({G}, q) can exhibit nonanalytic behavior for
one or more values of q where the singular locus Bq in the complex q plane crosses the
real q axis. We denote the largest such value as qc({G}).

Viewing the singular locus as a subvariety in the C
2 space of variables (q, v), when

qc({G}) is a positive integer, this is equivalent to the singular locus Bv in the complex
v plane of the q-state Potts antiferromagnet crossing the real v axis at v = −1, i.e.,
at T = 0, so that this qc-state Potts AFM has a zero-temperature critical point.
Examples:

1. qc = 2 for n → ∞ limit of cyclic graph ⇐⇒ Ising (q = 2 Potts) AFM has
Tc = 0 (and, since sq. lattice is bipartite, also equiv. to Ising FM having Tc = 0
here).

2. qc = 3 for infinite square lattice ⇐⇒ q = 3 Potts AFM has Tc = 0 on square
lattice; We also find this to be true for self-dual families of square-lattice graphs.

3. qc = 4 for infinite triangular lattice ⇐⇒ q = 4 Potts AFM has Tc = 0 on
triangular lattice;



Illustrative calculation of Bv and Bq for a given limit {G}. Let us consider the family
of circuit graphs Cn. We have

Z(Cn, q, v) = (q + v)n + (q − 1)vn = λn
0 + (q − 1)λn

1

where λ0 = q + v and λ1 = v.

In the n → ∞ limit, denoted {C}, one or the other of these λ’s will generically have
a larger magnitude than the other and hence will dominate the limit, so that the
reduced free energy

f = f({C}, q, v) = lim
n→∞

1

n
lnZ(Cn, q, v)

is f = ln(q + v) in the region |q + v| > |v| and f = ln v in the region
|v| > |q + v|. On the boundary curve separating these two regions, f changes form
nonanalytically. The limits n → ∞ and q → 1 do not commute; we discuss this more
generally later.

This boundary curve is given by the condition of equality in magnitude of the two λ’s,
namely |q + v| = |v|. Since zeros of Z(Cn, q, v) occur where the two (dominant)
λ’s are equal in magnitude, enabling cancellation, this is also the continuous
accumulation set of zeros of Z(Cn, q, v) as n → ∞.



In the complex v plane, the locus of solutions to the condition |q + v| = |v|, Bv, is
the infinite vertical line v = −(q/2) + ir, −∞ < r < ∞, which crosses the real-v
axis at v = −q/2. Equivalently, in the y plane, this is the infinite vertical line By:
y = 1 − (q/2) + ir.

Although this locus is noncompact in the y plane, it is compact in the z = y−1 plane,
where, for q 6= 2, it is the circle

∣

∣

∣
z +

1

q − 2

∣

∣

∣
=

1

|q − 2|
Evidently, this circle is centered at z = −1/(q − 2) with radius 1/|q − 2|, which
crosses the real z axis at z = 0 and z = −2/(q − 2). If q = 2, this locus is the
imaginary z axis.

The solution to |q + v| = |v| in the complex q plane, Bq, is the circle centered at
q = −v with radius |v|. This crosses the real q axis at q = −2v and q = 0. In
particular, for the chromatic polynomial, for which v = −1, this is the circle
|q − 1| = 1 centered at q = 1, passing through q = 0 and q = 2. Thus, qc = 2 in
this chromatic-polynomial case.

In Lecture 2 we will discuss more complicated examples.



Chromatic polynomials and Ground State Entropy of
Potts AFM

A quantity of particular interest is the ground state degeneracy, per site, of the Potts
antiferromagnet,

W ({G}, q) = lim
n→∞

P (G, q)1/n

The associated ground state entropy per site is S0 = kB lnW .

The q-state Potts antiferromagnet at T = 0 is noteworthy as a system that, for a
given type of graph G and sufficiently large q, exhibits nonzero ground state entropy
(per site) S0, or equivalently, W > 1.

There are physical systems that exhibit this type of residual low-temperature entropy,
such as water ice, for which W = 1.51, i.e., the entropy per molecule is
S0/kB = 0.41. This is due to the fact that ice is a hydrogen-bonded molecular
crystal and there is a twofold possibility for the H atom in each hydrogen bond, to be
closer to one oxygen or the other. Even with the constraint of local electric neutrality,
this produces exponentially many ground state configurations of equal (minimal) energy,
and hence a finite ground state entropy of ice.

Note that both of these cases, this entropy does not involve frustration; i.e., each
spin-spin contribution to the energy is minimal.



Simple proof of S0 > 0 for the Potts antiferromagnet on a bipartite graph Gbp. for
q > 2. An elementary lower bound on P (G, q) is obtained by assigning one color to
all of the vertices on the even sublattice, which can be done in any of q ways. Then
independently for each vertex on the odd sublattice, one can choose the color in any of
q − 1 ways. Therefore,

P (Gbp,, q) ≥ q(q − 1)n/2

Hence, for n → ∞, one has W ({G}, q) ≥ √
q − 1 and

S0 ≥ (kB/2) ln(q − 1)

So for q > 2, there is nonzero ground state entropy per site.



Historical Note on Graph Coloring

The early interest by Birkhoff and Whitney in chromatic polynomials was motivated by
their connection with the map coloring problem, i.e. face-colorings of planar graphs.

Def. a proper q-coloring of the faces of a graph is an assignment of colors, from a set
of q colors, to the faces of a graph such that no two adjacent faces (faces that share an
edge) have the same color.

For a planar graph G, there is a 1-1 correspondence between the vertices of G and the
faces of the planar dual graph G∗. Therefore, P (G, q) equivalently counts the proper
q-colorings of the vertices of G and the proper q-colorings of the faces of G∗.

Def. An edge of G which, if cut, would increase the number of components of G by 1
is called a bridge. A bridge in G leads to a face being adjacent to itself across the
bridge. Since adjacent faces must have different colors in a proper q-coloring of the
faces of a planar graph G∗, this is not possible if G∗ contains any bridges.

The Four-Color Theorem is the statement that if G is a planar graph with no loops, so
G∗ is a planar graph with no bridges, then P (G, 4) > 0, i.e., there exists a proper
q-coloring of the vertices of G with q = 4 colors, or equivalently, there exists a proper
q-coloring of the faces of G∗ with q = 4 colors.



Conclusions

• Important connection between the Potts model in statistical mechanics and the
Tutte polynomial in mathematical graph theory.

• T = 0. Potts antiferromagnet partition function is identical to the chromatic
polynomial relevant for graph coloring.

•We have given some calculational methods and simple examples.

•Worthwhile to study pattern of zeros of Z(G, q, v) in v plane for fixed q and in q
plane for fixed v. Merging of these zeros produces curves in the n → ∞ limit;
locations where these cross the real v or real q axis are physically significant.

• Including external magnetic field, one can carry out a similar study for the zeros in
the complex µ plane.

• Connection of P (G, q) with ground-state entropy per site of Potts AFM.

• Thus, study of the properties of the Potts model partition function and Tutte
polynomial on various families of graphs, together with the asymptotic behavior as
n → ∞, involves interesting confluence of statistical physics, graph theory,
combinatorics, complex analysis, and algebraic geometry. Many opportunities for
further work.


