Lamplighter groups from affine automorphisms of rooted trees

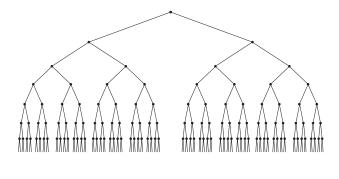
Dmytro Savchuk (joint with Said Sidki, Universidade de Brasília)

University of South Florida

Aug 19, 2016

Automata – transducers

 $V(T) = X^*$, $X = \{0, \dots, d-1\}$ – alphabet

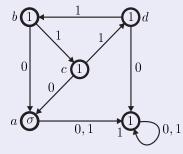


 $G < \operatorname{Aut} T$

Action on T given by finite initial automaton

Definition (By Example)

 $S_2 = \{\varepsilon, \sigma\}$ acts on $X = \{0, 1\}$.



 \mathcal{A} — noninitial automaton, \mathcal{A}_q — initial automaton, $q \in \{a, b, id\}$.

 \mathcal{A}_q acts on X^* (and on T)

Definition of automaton group

Given an automaton A every state q defines an automorphism A_q of X^*

Definition

The automaton group generated by automaton A is a group

 $G(A) = \langle A_q \mid q \text{ is a state of } A \rangle < \operatorname{Aut} X^*$

Definition of automaton group

Given an automaton A every state q defines an automorphism A_q of X^*

Definition

The automaton group generated by automaton A is a group

$$G(A) = \langle A_q \mid q \text{ is a state of } A \rangle < \operatorname{Aut} X^*$$

Example

 $a(w) = \overline{w}$. Thus $a^2 = 1$ and $G(A) \simeq C_2$.

- Burnside problem on infinite periodic groups (Aleshin group, Grigorchuk group, Gupta-Sidki group,...)
- Milnor problem on groups of intermediate growth (Grigorchuk group, Gupta-Sidki group,...)
- Day problem on amenability (Grigorchuk group, Gupta-Sidki group,...)
- Atiyah conjecture on L² Betti numbers (Lamplighter group)
- Connection to holomorphic dynamics via Iterated Monodromy Groups
- Connection to combinatorics via Hanoi Towers groups

History

Notation: (m, n)-automata — *m*-state automata over *n*-letter alphabet

- (2000 Grigorchuk, Nekrashevych, Sushchansky) Groups generated by (2,2)-automata were classified: {1}, ℤ₂, ℤ₂ × ℤ₂, ℤ, D_∞ and the Lamplighter group.
- (2001 Reznykov, Sushchansky) Semigroups generated by (2,2)-automata were classified: additionally 29 nonisomorphic semigroups, including a semigroup of intermediate growth
- (2007 Bondarenko, Grigorchuk, Kravchenko, Muntyan, Nekrashevych, S., Šunić) Groups generated by (3,2)-automata were studied: up to 115 non-isomorphic groups generated by 194 "non-symmetric" automata. No Burnside groups.
- (2014 Caponi, S.) There are 7471 "non-symmetric" (4,2)-automata. No Burnside groups (4 groups pending).

Lamplighter Group

Definition

The lamplighter group is

$$\begin{array}{rcl} \mathbb{Z}_2 &=& \mathbb{Z}_2 \wr \mathbb{Z} \\ &\cong& \left(\cdots \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \cdots \right) \rtimes \mathbb{Z}_i \\ &\cong& \left\langle a, b \mid a^2 = [a, a^{b^i}] = 1, i \geq 1 \right\rangle \end{array}$$

where \mathbb{Z} acts on $B = \bigoplus_{i \in \mathbb{Z}} \mathbb{Z}_2$ by "shifting the index".

We have $\langle a \rangle \cong \mathbb{Z}_2$ and

$$\langle a^{b'}, i \in \mathbb{Z} \rangle \cong \cdots \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \cdots$$

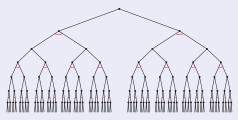
and we have \mathbb{Z} -worth of commuting elements in L_2 .

How do we get many commuting elements in Aut T?

How do we get many commuting elements in Aut T?

Definition

• An automorphism of X* is called spherically homogeneous if it acts on the k-th letter of each word by a permutation depending only on k.



- $\operatorname{SHAut}(X^*) \cong \operatorname{Sym}(X)^\infty$ spherically homogeneous automorphisms
- $\mathbb{Z}_d^{\infty} < \operatorname{SHAut}(X^*)$

Observation

Known instances of lamplighters have $\bigoplus_{i \in \mathbb{Z}} \mathbb{Z}_2$ inside $SHAut(X^*)$.

So we need to understand what normalizes $\mathbb{Z}_d^{\infty} < \operatorname{SHAut}(X^*)$.

Dmytro Savchuk (USF)

Affine Automorphisms

Dmytro Savchuk (USF)

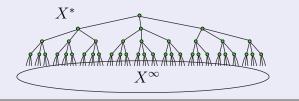
◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

\setbeamertemplate{navigation symbols}{}

Automorphisms of X^* coming from boundary actions

Definition

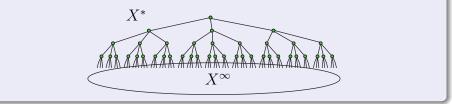
The boundary X^{∞} of the tree X^* consists of all infinite words over X (that correspond to all infinite paths from the root of X^*)



Automorphisms of X^* coming from boundary actions

Definition

The boundary X^{∞} of the tree X^* consists of all infinite words over X (that correspond to all infinite paths from the root of X^*)



- Each automorphism of X^* induces a transformation of X^∞
- Some transformations of X^{∞} induce automorphisms of X^*

Boundary as the ring of power series $\mathbb{Z}_d[[t]]$

To define transformations of X^{∞} we can use different structures.

For $X = \mathbb{Z}_d$ the elements of X^{∞} become power series in $\mathbb{Z}_d[[t]]$.

Boundary as the ring of power series $\mathbb{Z}_d[[t]]$

To define transformations of X^{∞} we can use different structures.

For $X = \mathbb{Z}_d$ the elements of X^{∞} become power series in $\mathbb{Z}_d[[t]]$.

$$X^{\infty}
i a_0 a_1 a_2 \ldots \longleftrightarrow a_0 + a_1 t + a_2 t^2 + \cdots \in \mathbb{Z}_d[[t]]$$

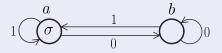
Example

For a fixed power series $g(t) \in \mathbb{Z}_d[[t]]$ the transformation of $\mathbb{Z}_d[[t]]$

 $f(t) \mapsto f(t) + g(t)$

induces a element of $SHAut(X^*)$.

Theorem (Grigorchuk, Nekrashevych, Sushchansky 2000) The group generated by automaton



isomorphic to the lamplighter group is induced by transformations

$$egin{array}{rcl} f(t) &\mapsto & (1+t)f(t)+1 \ f(t) &\mapsto & (1+t)f(t) \end{array}$$

of $\mathbb{Z}_2[[t]]$.

The language of power series turned out to be very fruitful:

- Silva and Steinberg (2005) realized G ≀ Z as automaton group for each finite abelian G
- Similar ideas: Bartholdi and Šunić (2006) produced a different representation of Z^k_d ¿ Z
- Gives rise to families of (bi)reversible automata generating Z^k_d ¿ Z (Bondarenko, S. – in preparation)

The language of power series turned out to be very fruitful:

- Silva and Steinberg (2005) realized G ≥ Z as automaton group for each finite abelian G
- Similar ideas: Bartholdi and Šunić (2006) produced a different representation of Z^k_d ¿ Z
- Gives rise to families of (bi)reversible automata generating Z^k_d ≥ Z (Bondarenko, S. – in preparation)

But it still is not rich enough to describe all lamplighters.

For $X = \mathbb{Z}_d$, $X^{\infty} = \mathbb{Z}_d^{\infty}$ has a natural structure of right $\mathbb{CFM}(\mathbb{Z}_d)$ -module (we can multiply "vectors" by column finite matrices on right).

For $X = \mathbb{Z}_d$, $X^{\infty} = \mathbb{Z}_d^{\infty}$ has a natural structure of right $\mathbb{CFM}(\mathbb{Z}_d)$ -module (we can multiply "vectors" by column finite matrices on right).

Let

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots \\ a_{21} & a_{22} & a_{23} & a_{24} & \dots \\ a_{31} & a_{32} & a_{33} & a_{34} & \dots \\ a_{41} & a_{42} & a_{43} & a_{44} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

be a column finite matrix over \mathbb{Z}_d and $\mathbf{b} \in \mathbb{Z}_d^{\infty}$ be a (row) vector.

Definition

A transformation

$$\begin{array}{ccccc} \pi_{A,\mathbf{b}} \colon & \mathbb{Z}_d^\infty & \longrightarrow & \mathbb{Z}_d^\infty \\ & \mathbf{x} & \mapsto & \mathbf{b} + \mathbf{x}A \end{array}$$

is called an affine transformation of \mathbb{Z}_d^{∞} .

1

Proposition

Let

$A = \begin{bmatrix} a_{11} & * & * & * & \cdots \\ 0 & a_{22} & * & * & \cdots \\ 0 & 0 & a_{33} & * & \cdots \\ 0 & 0 & 0 & a_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$

be an upper unitriangular (a_{ii} is a unit in \mathbb{Z}_d) matrix and $\mathbf{b} \in \mathbb{Z}_d^{\infty}$ be a vector.

Then the affine transformation $\pi_{A,\mathbf{b}}$ of \mathbb{Z}_d^{∞} induces an automorphism of X^* (also denoted by $\pi_{A,\mathbf{b}}$).

Definition

- Automorphism $\pi_{A,\mathbf{b}}$ of X^* is called affine.
- $Aff(X^*)$ the group of all affine automorphisms of X^* .

Example

The group of shifts $\operatorname{Aff}_{I}(X^{*}) = \{\pi_{I,\mathbf{b}} \mid \mathbf{b} \in \mathbb{Z}_{d}^{\infty}\} \cong \mathbb{Z}_{d}^{\infty}$ is a normal abelian subgroup of $\operatorname{Aff}(X^{*})$ consisting of spherically homogeneous automorphisms.

Example

For a power series $g(t) = a_0 + a_1t + a_2t^2 + \cdots$ the transformation of $\mathbb{Z}_d[[t]]$ defined by

 $f(t)\mapsto g(t)f(t)$

is equal to $\pi_{A_{g},\mathbf{0}}$, where

$$A_g = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & \dots \\ 0 & a_0 & a_1 & a_2 & \dots \\ 0 & 0 & a_0 & a_1 & \dots \\ 0 & 0 & 0 & a_0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Dmytro Savchuk (USF)

Theorem (S., Sidki, 2015)

$$N_{\operatorname{Aut}(X^*)}(\operatorname{Aff}_I(X^*)) = \operatorname{Aff}(X^*)$$

Corollary

In the case |X| = 2,

$$N_{\operatorname{Aut}(X^*)}(\operatorname{SHAut}(X^*)) = \operatorname{Aff}(X^*)$$

Moreover

Theorem

Each faithful automaton representations of $L_2 \cong \mathbb{Z}_2 \wr \mathbb{Z}$ on the binary tree is conjugate to the one with the base group inside $SHAut(X^*)$.

Theorem (S., Sidki)

The group $Aff(X^*)$ is generated by an automaton with transitions:

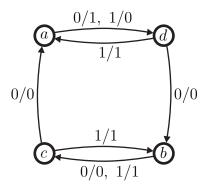
$$(\pi_{A,\mathbf{b}} \xrightarrow{x / (b_1 + xa_{11})} \xrightarrow{\pi_{\sigma(A), x \cdot \sigma([1,0,0,\ldots]A) + \sigma(\mathbf{b})}}$$

Corollary

An automorphism $\pi_{A,\mathbf{b}}$ of X^* is defined by finite automaton \Leftrightarrow matrix A, its rows, and vector **b** are eventually periodic.

[Note: Similar result was obtained also by Oliynyk and Sushchansky]

Principal Example



Theorem (S., Sidki)

$$G \cong \left(\mathbb{Z}_2^2 \wr \mathbb{Z}\right) \rtimes \mathbb{Z}_2 = \left(\langle x, y \rangle \wr \langle t \rangle\right) \rtimes \langle a \rangle,$$

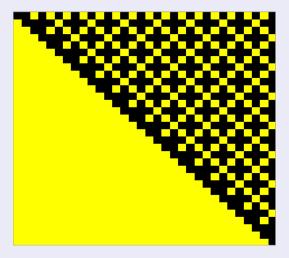
where the action of a on x, y, t is defined as follows: $x^a = x$, $y^a = y^{t^{-1}}$, $t^a = t^{-1}$.

Dmytro Savchuk (USF)

Affine Automorphisms

Proposition

The automorphism t = ac normalizes $SHAut(X^*)$ and is equal to $\pi_{A,b}$ for the matrix A



and $\mathbf{b} = [(1, 0, 0, 1, 1, 1, 0, 0)^{\infty}].$

Dmytro Savchuk (USF)

Affine Automorphisms

Idea of the proof

Conjugates of any $z \in SHAut(X^*)$ by powers of t are also in $SHAut(X^*)$, so we can define

$$z^{t^{i_1}+t^{i_2}+\cdots+t^{i_n}} := z^{t^{i_1}}z^{t^{i_2}}\cdots z^{t^{i_n}}$$

Proposition

Elements x := ab and y = cd are in SHAut(X^*), so $x^{p(t)}$ and $y^{p(t)}$ are defined for each Laurent polynomial $p(t) \in \mathbb{Z}_d[t, t^{-1}]$.

Proposition

 $\langle x, y, t \rangle \cong \mathbb{Z}_2^2 \wr \mathbb{Z}.$

To prove this we need to show $x^{p(t)}y^{q(t)}$ is not trivial for all $p(t), q(t) \in \mathbb{Z}_d[[t]]$.

Define

$$\phi_n(t):=1+t+t^2+\cdots+t^{n-1}.$$

For each polynomial $p(t) = \sum_{i=0}^{k} a_i t^i \in \mathbb{Z}_2[t]$ define also

$$\psi_p(t) = \sum_{i=1}^k a_i \phi_i(t).$$

Lemma

For all pairs of polynomials $p(t), q(t) \in \mathbb{Z}_2[t]$

- the state of $x^{p(t)}y^{q(t)}$ at each vertex of the first level is $x^{\psi_p(t^{-1})+q(t^{-1})}y^{p(t^{-1})}$.
- the state of $x^{p(t^{-1})}y^{q(t^{-1})}$ at each vertex of the first level is $x^{t\psi_p(t)+q(t)}y^{p(t)}$.

This defines a dynamical system on $(\mathbb{Z}_2[t])^2$ whose analysis yields the result.

Dmytro Savchuk (USF)

Thank You!