Lee-Yang zeros for the Diamond Hierarchical Lattice.

Pavel Bleher ${ }^{\dagger}$, Mikhail Lyubich ${ }^{\ddagger}$, and Roland Roeder ${ }^{\dagger}$

IUPUI ${ }^{\dagger}$ and Stony Brook University ${ }^{\ddagger}$
Olivier Remy - IUPUI
Aug. 16, 2016

Outline
-ロ〉4司〉4 三•

Outline

- Ising model

1. Partition Function, Lee-Yang zeros, and thermodynamic limit
2. Expected properties for the \mathbb{Z}^{2} lattice.
3. Hierarchical lattices and the Migdal-Kadanoff RG equations
4. Renormalization Mapping of the Lee-Yang cylinder

- Statement of the main results

1. Dynamical results
2. Physical results

- Proof of horizontal expansion

The Ising Model—a description of magnetic materials

The Ising model is a classical statistical physics model - 1925 by Ernst Ising.

The Ising Model—a description of magnetic materials

The Ising model is a classical statistical physics model - 1925 by Ernst Ising.

The goal of the model is to study magnetic material by looking at the electrons composing it and how they interact.

The Ising Model—a description of magnetic materials

The Ising model is a classical statistical physics model - 1925 by Ernst Ising.

The goal of the model is to study magnetic material by looking at the electrons composing it and how they interact.

The Ising model is one of the simplest models where phase transitions can occur.

Ising model—a description of magnetic materials

Magnetic material can be represented with a graph 「, with vertex set V and edge set E.

Ising model—a description of magnetic materials

Magnetic material can be represented with a graph 「, with vertex set V and edge set E.

Electrons at vertices, interactions along edges.

Ising model-a description of magnetic materials

Magnetic material can be represented with a graph Γ, with vertex set V and edge set E.

Electrons at vertices, interactions along edges.
For any configuration of spins $\sigma: V \rightarrow\{ \pm 1\}$, we have:

$$
I(\sigma)=\sum_{(v, w) \in E} \sigma(v) \sigma(w) \quad M(\sigma)=\sum_{v \in V} \sigma(v)
$$

$I(\sigma)$ is interaction of σ along edges, and $M(\sigma)$ is the total magnetic moment of σ.

Ising model—a description of magnetic materials

Magnetic material can be represented with a graph Γ, with vertex set V and edge set E.

Electrons at vertices, interactions along edges.
For any configuration of spins $\sigma: V \rightarrow\{ \pm 1\}$, we have:

$$
I(\sigma)=\sum_{(v, w) \in E} \sigma(v) \sigma(w) \quad M(\sigma)=\sum_{v \in V} \sigma(v)
$$

$I(\sigma)$ is interaction of σ along edges, and $M(\sigma)$ is the total magnetic moment of σ.

The energy of state σ exposed to an external magnetic field h is:

$$
H(\sigma)=-J \cdot I(\sigma)-h \cdot M(\sigma),
$$

where $J>0$.

Gibbs Distribution and the Partition Function

At equilibrium, a state σ occurs with probability proportional to

$$
W(\sigma)=e^{-H(\sigma) / T}
$$

where $T>0$ is the temperature.

Gibbs Distribution and the Partition Function

At equilibrium, a state σ occurs with probability proportional to

$$
W(\sigma)=e^{-H(\sigma) / T}
$$

where $T>0$ is the temperature.
Thus, $P(\sigma)=W(\sigma) / Z(h, T)$, where

$$
Z(h, T)=\sum_{\sigma} W(\sigma)=\sum_{\sigma} e^{-H(\sigma) / T} .
$$

Two variables of the model : h and T.

Gibbs Distribution and the Partition Function

At equilibrium, a state σ occurs with probability proportional to

$$
W(\sigma)=e^{-H(\sigma) / T}
$$

where $T>0$ is the temperature.
Thus, $P(\sigma)=W(\sigma) / Z(h, T)$, where

$$
Z(h, T)=\sum_{\sigma} W(\sigma)=\sum_{\sigma} e^{-H(\sigma) / T} .
$$

Two variables of the model : h and T.
$Z(h, T)$ is called the Partition function.
It governs the physical properties of the Ising model on Γ.

Change of variables

Let $t=e^{-J / T}$ (temperature-like) and $z=e^{-h / T}$ (field-like).
Then $W(\sigma)=t^{-l(\sigma) / 2} z^{-M(\sigma)}$.

Change of variables

Let $t=e^{-J / T}$ (temperature-like) and $z=e^{-h / T}$ (field-like).
Then $W(\sigma)=t^{-l(\sigma) / 2} z^{-M(\sigma)}$.

$$
\begin{aligned}
Z(z, t)= & \sum_{\sigma} W(\sigma)=\sum_{\sigma} t^{-l(\sigma) / 2} z^{-M(\sigma)} \\
= & a_{d}(t) z^{d}+a_{d-1}(t) z^{d-1}+\cdots+a_{1-d}(t) z^{1-d}+a_{-d}(t) z^{-d} \\
& \quad \text { where } d=|E|
\end{aligned}
$$

Change of variables

Let $t=e^{-J / T}$ (temperature-like) and $z=e^{-h / T}$ (field-like).
Then $W(\sigma)=t^{-l(\sigma) / 2} z^{-M(\sigma)}$.

$$
\begin{aligned}
Z(z, t)= & \sum_{\sigma} W(\sigma)=\sum_{\sigma} t^{-l(\sigma) / 2} z^{-M(\sigma)} \\
= & a_{d}(t) z^{d}+a_{d-1}(t) z^{d-1}+\cdots+a_{1-d}(t) z^{1-d}+a_{-d}(t) z^{-d} \\
& \text { where } d=|E|
\end{aligned}
$$

Since $I(-\sigma)=I(\sigma)$ and $M(-\sigma)=-M(\sigma)$ we have that Z is symmetric under $z \mapsto 1 / z$:

$$
a_{i}(t)=a_{-i}(t)
$$

Physical values of $T>0$ correspond to $t \in(0,1)$, and the physical values of $h \in \mathbb{R}$ correspond to $z \in(0, \infty)$.

Thermodynamic quantities in terms of zeros of $Z(z, t)$.

For each $t \in \mathbb{C}^{*} Z(z, t)=0$ has $2|E|$ zeros $z_{i}(t) \in \mathbb{C}$.

Thermodynamic quantities in terms of zeros of $Z(z, t)$.

For each $t \in \mathbb{C}^{*} Z(z, t)=0$ has $2|E|$ zeros $z_{i}(t) \in \mathbb{C}$.
Free energy:
$F(z, t):=-T \log Z(z, t)=-T \sum \log \left|z-z_{i}(t)\right|+|E| T\left(\log |z|+\frac{1}{2} \log |t|\right)$

Magnetization:

$$
M(z, t):=\sum_{\sigma} M(\sigma) P(\sigma)=z \sum \frac{1}{z-z_{i}(t)}-|E|
$$

The Lee-Yang Theorem

Theorem (Lee-Yang, 1952)
At any fixed $t \in[0,1]$, then all complex zeros of $Z(z, t)$ lie on the unit circle $|z|=1$.

Phase Transitions

One of the main goals of the Ising Model is to explain phase transitions.

A phase transition occurs at any place where $F(z, t)$ depends non-analytically on (z, t) for physical values of (z, t).

Phase Transitions

One of the main goals of the Ising Model is to explain phase transitions.

A phase transition occurs at any place where $F(z, t)$ depends non-analytically on (z, t) for physical values of (z, t).
For finite models:
$F(z, t):=-T \log Z(z, t)=-T \sum \log \left|z-z_{i}(t)\right|+|E| T\left(\log |z|+\frac{1}{2} \log |t|\right)$
Problem: No phase transition on finite models.

Actual and model magnetic materials

Problem: no phase transition on finite models.

Actual magnetic material: \mathbb{Z}^{2}

Model magnetic material: DHL

To model accurately magnetic material, one has to look at a scequence of graphs Γ_{n}. Actual behavior of a magnet governed by the limit as the number of electrons goes to infinity.

Actual and model magnetic materials

Problem: no phase transition on finite models.

Actual magnetic material: \mathbb{Z}^{2}

Model magnetic material: DHL

To model accurately magnetic material, one has to look at a scequence of graphs Γ_{n}. Actual behavior of a magnet governed by the limit as the number of electrons goes to infinity.

Actual and model magnetic materials

Problem: no phase transition on finite models.

Actual magnetic material: \mathbb{Z}^{2}

Model magnetic material: DHL

To model accurately magnetic material, one has to look at a scequence of graphs Γ_{n}. Actual behavior of a magnet governed by the limit as the number of electrons goes to infinity.

Actual and model magnetic materials

Problem: no phase transition on finite models.

Actual magnetic material: \mathbb{Z}^{2}

Model magnetic material: DHL

To model accurately magnetic material, one has to look at a scequence of graphs Γ_{n}. Actual behavior of a magnet governed by the limit as the number of electrons goes to infinity.

Actual and model magnetic materials

Problem: no phase transition on finite models.

Actual magnetic material: \mathbb{Z}^{2}

Model magnetic material: DHL

To model accurately magnetic material, one has to look at a scequence of graphs Γ_{n}. Actual behavior of a magnet governed by the limit as the number of electrons goes to infinity.

Actual and model magnetic materials

Problem: no phase transition on finite models.

Actual magnetic material: \mathbb{Z}^{2}

Model magnetic material: DHL

To model accurately magnetic material, one has to look at a scequence of graphs Γ_{n}. Actual behavior of a magnet governed by the limit as the number of electrons goes to infinity.

Actual magnetic material corresponds to the limit $n \rightarrow \infty$

One can define Z_{n}, F_{n} and M_{n} for each graph of Γ_{n}.

Actual magnetic material corresponds to the limit $n \rightarrow \infty$

One can define Z_{n}, F_{n} and M_{n} for each graph of Γ_{n}.
When does taking a limit physically make sense? How to give a precise definiton of this limit?

Actual magnetic material corresponds to the limit $n \rightarrow \infty$

One can define Z_{n}, F_{n} and M_{n} for each graph of Γ_{n}.
When does taking a limit physically make sense? How to give a precise definiton of this limit?
The thermodynamic limit exists for the sequence Γ_{n} if

$$
\frac{1}{\left|E_{n}\right|} F_{n}(z, t) \rightarrow F(z, t)
$$

for any $z \in \mathbb{R}_{+}$and $t \in(0,1)$.

Actual magnetic material corresponds to the limit $n \rightarrow \infty$

One can define Z_{n}, F_{n} and M_{n} for each graph of Γ_{n}.
When does taking a limit physically make sense? How to give a precise definiton of this limit?
The thermodynamic limit exists for the sequence Γ_{n} if

$$
\frac{1}{\left|E_{n}\right|} F_{n}(z, t) \rightarrow F(z, t)
$$

for any $z \in \mathbb{R}_{+}$and $t \in(0,1)$.
For each $t \in[0,1]$ there is a measure μ_{t} on \mathbb{T} describing the asymptotic distribution of Lee-Yang zeros.

Phase transitions in terms of Lee-Yang distribution

If the thermodynamic limit exists, one can define the physical quantities for the limiting model.

$$
F(z, t)=-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t|
$$

Phase transitions in terms of Lee-Yang distribution

 If the thermodynamic limit exists, one can define the physical quantities for the limiting model.$$
F(z, t)=-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t|
$$

$F(z, t)$ does not necessarily depend analytically on (z, t). Possible phase transitions.

Phase transitions in terms of Lee-Yang distribution

If the thermodynamic limit exists, one can define the physical quantities for the limiting model.

$$
F(z, t)=-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t|
$$

$F(z, t)$ does not necessarily depend analytically on (z, t). Possible phase transitions.

$$
M(z, t)=2 z \int_{\mathbb{T}} \frac{d \mu_{t}(\zeta)}{z-\zeta}-1
$$

Phase transitions in terms of Lee-Yang distribution

If the thermodynamic limit exists, one can define the physical quantities for the limiting model.

$$
F(z, t)=-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t|
$$

$F(z, t)$ does not necessarily depend analytically on (z, t). Possible phase transitions.

$$
\begin{aligned}
M(z, t) & =2 z \int_{\mathbb{T}} \frac{d \mu_{t}(\zeta)}{z-\zeta}-1 \\
\lim _{z \rightarrow 1^{+}} M(z, t) & =\rho_{t}(0) \text { where } \rho_{t}(\phi)=2 \pi \frac{d \mu_{t}(\phi)}{d \phi}, \text { and } \phi=\arg (z) .
\end{aligned}
$$

Phase transitions in terms of Lee-Yang distribution

If the thermodynamic limit exists, one can define the physical quantities for the limiting model.

$$
F(z, t)=-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t|
$$

$F(z, t)$ does not necessarily depend analytically on (z, t). Possible phase transitions.

$$
\begin{aligned}
M(z, t) & =2 z \int_{\mathbb{T}} \frac{d \mu_{t}(\zeta)}{z-\zeta}-1 \\
\lim _{z \rightarrow 1^{+}} M(z, t) & =\rho_{t}(0) \text { where } \rho_{t}(\phi)=2 \pi \frac{d \mu_{t}(\phi)}{d \phi}, \text { and } \phi=\arg (z) .
\end{aligned}
$$

For small $t, M(z, t)$ has a jump of twice $\rho_{t}(0)$ as z changes from below 1 to above1.

Phase transitions in terms of Lee-Yang distribution

If the thermodynamic limit exists, one can define the physical quantities for the limiting model.

$$
F(z, t)=-2 T \int_{\mathbb{T}} \log |z-\zeta| d \mu_{t}(\zeta)+T \log |z|+\frac{1}{2} \log |t|
$$

$F(z, t)$ does not necessarily depend analytically on (z, t). Possible phase transitions.

$$
\begin{aligned}
M(z, t) & =2 z \int_{\mathbb{T}} \frac{d \mu_{t}(\zeta)}{z-\zeta}-1 \\
\lim _{z \rightarrow 1^{+}} M(z, t) & =\rho_{t}(0) \text { where } \rho_{t}(\phi)=2 \pi \frac{d \mu_{t}(\phi)}{d \phi}, \text { and } \phi=\arg (z) .
\end{aligned}
$$

For small $t, M(z, t)$ has a jump of twice $\rho_{t}(0)$ as z changes from below 1 to above1.

Understanding how the Lee-Yang distributions $\mu_{t}(\phi)$ vary with t and ϕ is essential to understanding phase transitions of the model

Expected limiting distributions of Lee-Yang zeros for \mathbb{Z}^{2}

Expected limiting distributions of Lee-Yang zeros for \mathbb{Z}^{2}

Expected limiting distributions of Lee-Yang zeros for \mathbb{Z}^{2}

Expected limiting distributions of Lee-Yang zeros for \mathbb{Z}^{2}

Expected limiting distributions of Lee-Yang zeros for \mathbb{Z}^{2}

The Diamond Hierarchical Lattice (DHL)

Migdal-Kadanoff Renormalization ${ }^{123}$

Consider the conditional partition functions:

The total partition function is equal to $Z_{n}=U_{n}+2 V_{n}+W_{n}$.
${ }^{1}$ A.A. Migdal. Recurrence equations in gauge field theory. JETP, (1975).
${ }^{2}$ L. P. Kadanoff. Notes on Migdal's recursion formulae. Ann. Phys., (1976).
${ }^{3}$ B. Derrida, L. De Seze, and C. Itzykson, Fractal structure of zeros in hierarchical models, J. Statist. Phys. (1983).

Migdal-Kadanoff Renormalization ${ }^{123}$

Consider the conditional partition functions:

The total partition function is equal to $Z_{n}=U_{n}+2 V_{n}+W_{n}$.
Migdal-Kadanoff RG Equations:
$U_{n+1}=\left(U_{n}^{2}+V_{n}^{2}\right)^{2}, \quad V_{n+1}=V_{n}^{2}\left(U_{n}+W_{n}\right)^{2}, \quad W_{n+1}=\left(V_{n}^{2}+W_{n}^{2}\right)^{2}$.

[^0]
Derivation:

$$
\begin{aligned}
& =U_{n}^{4}+2 U_{n}^{2} V_{n}^{2}+\quad V_{n}^{4} .
\end{aligned}
$$

Derivation:

$$
\begin{aligned}
& U_{n+1}=Z_{n+1}\binom{{ }^{5^{5}}{ }^{\oplus} \xi^{\xi} \xi_{\xi^{3}}}{\xi^{s^{5}}}
\end{aligned}
$$

$$
\begin{aligned}
& =U_{n}^{4}+2 U_{n}^{2} V_{n}^{2}+V_{n}^{4} . \\
& R: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3},(U, V, W) \mapsto\left(\left(U^{2}+V^{2}\right)^{2}, V^{2}(U+W)^{2},\left(V^{2}+W^{2}\right)^{2}\right)
\end{aligned}
$$

MK renormalization in the (z, t) coordinates:

We can lift R from the $[U: V: W]$ coordinates (downstairs) to the (z, t) coordiantes upstairs.

$$
\begin{equation*}
U_{0}=\frac{1}{z t^{1 / 2}}, \quad V_{0}=t^{1 / 2}, \quad W_{0}=\frac{z}{t^{1 / 2}} \tag{1}
\end{equation*}
$$

MK renormalization in the (z, t) coordinates:

We can lift R from the $[U: V: W]$ coordinates (downstairs) to the (z, t) coordiantes upstairs.

$$
\begin{equation*}
U_{0}=\frac{1}{z t^{1 / 2}}, \quad V_{0}=t^{1 / 2}, \quad W_{0}=\frac{z}{t^{1 / 2}} \tag{1}
\end{equation*}
$$

The mapping upstairs is:

$$
\mathcal{R}(z, t)=\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) .
$$

MK renormalization in the (z, t) coordinates:

We can lift R from the [U:V:W] coordinates (downstairs) to the (z, t) coordiantes upstairs.

$$
\begin{equation*}
U_{0}=\frac{1}{z t^{1 / 2}}, \quad V_{0}=t^{1 / 2}, \quad W_{0}=\frac{z}{t^{1 / 2}} \tag{1}
\end{equation*}
$$

The mapping upstairs is:

$$
\mathcal{R}(z, t)=\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) .
$$

The (z, t) coordinates can be seen as affine coordinates of [$z: t: 1]$.

and Ψ is a degree 2 rational map.

Renormalization on the Lee-Yang cylinder

Let $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ be the Lee-Yang cylinder.

$$
\mathcal{R}(z, t)=\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) .
$$

One can check that $\mathcal{R}(\mathcal{C})=\mathcal{C}$.

Renormalization on the Lee-Yang cylinder

Let $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ be the Lee-Yang cylinder.

$$
\mathcal{R}(z, t)=\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) .
$$

One can check that $\mathcal{R}(\mathcal{C})=\mathcal{C}$.
Let $\mathcal{S}_{n} \subset \mathcal{C}$ denote the Lee-Yang zeros for Γ_{n}.

- $\mathcal{S}_{0}:=\left\{z^{2}+2 t z+1=0\right\} \cap \mathcal{C}$.
- for $n \geq 1$ we have $\mathcal{S}_{n+1}=\mathcal{R}_{\mid \mathcal{C}}^{-1} \mathcal{S}_{n}$.

Renormalization on the Lee-Yang cylinder

Let $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ be the Lee-Yang cylinder.

$$
\mathcal{R}(z, t)=\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) .
$$

One can check that $\mathcal{R}(\mathcal{C})=\mathcal{C}$.
Let $\mathcal{S}_{n} \subset \mathcal{C}$ denote the Lee-Yang zeros for Γ_{n}.

- $\mathcal{S}_{0}:=\left\{z^{2}+2 t z+1=0\right\} \cap \mathcal{C}$.
- for $n \geq 1$ we have $\mathcal{S}_{n+1}=\mathcal{R}_{\mid \mathcal{C}}^{-1} \mathcal{S}_{n}$.

It is this recursive relationship between \mathcal{S}_{n+1} and \mathcal{S}_{n} that makes this problem become a dynamical systems problem.

Lee-Yang zeros as pull-backs under \mathcal{R}

Lee-Yang zeros as pull-backs under \mathcal{R}

Lee-Yang zeros as pull-backs under \mathcal{R}

Geometry of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part I

\mathcal{R} has two points of indeterminacy $\alpha_{ \pm}=(\pm i, 1) \in \mathcal{T}$.

$$
\mathcal{R}(z, t)=\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) .
$$

Geometry of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part I

\mathcal{R} has two points of indeterminacy $\alpha_{ \pm}=(\pm i, 1) \in \mathcal{T}$.

$$
\mathcal{R}(z, t)=\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) .
$$

Points approaching α_{+}or α_{-}at angle ω with respect to the vertical are mapped by \mathcal{R} to $\left(2 \omega, \sin ^{2} \omega\right)$.

Geometry of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part I

\mathcal{R} has two points of indeterminacy $\alpha_{ \pm}=(\pm i, 1) \in \mathcal{T}$.

$$
\mathcal{R}(z, t)=\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) .
$$

Points approaching α_{+}or α_{-}at angle ω with respect to the vertical are mapped by \mathcal{R} to $\left(2 \omega, \sin ^{2} \omega\right)$.

Geometry of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part I

\mathcal{R} has two points of indeterminacy $\alpha_{ \pm}=(\pm i, 1) \in \mathcal{T}$.

$$
\mathcal{R}(z, t)=\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) .
$$

Points approaching α_{+}or α_{-}at angle ω with respect to the vertical are mapped by \mathcal{R} to $\left(2 \omega, \sin ^{2} \omega\right)$.

Geometry of $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$, part II

$$
\mathcal{R}(z, t)=\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) .
$$

Dynamical results I

Theorem (Bleher, Lyubich, Roeder) $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$ is partially hyperbolic.

Dynamical results I

Theorem (Bleher, Lyubich, Roeder)

$\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$ is partially hyperbolic.
That is:

1. We have a horizontal tangent conefield $\mathcal{K}(x)$ and a vertical linefield $L(x) \subset T_{x} \mathcal{C}$ depending continuously on x and invariant under $D \mathcal{R}$:

2. Horizontal tangent vectors $v \in \mathcal{K}(x)$ get exponentially stretched under $D \mathcal{R}^{n}$ at a rate that dominates any occasional expansion of tangent vectors in $L(x)$.

Dynamical results II

Proposition (BLR)
\mathcal{R} has a unique invariant central foliation \mathcal{F}^{c}.

Dynamical results II

Proposition (BLR)
\mathcal{R} has a unique invariant central foliation \mathcal{F}^{c}.
Precisely:
A vertical foliation is a regular family of disjoint vertical paths that cover the cylinder. «Central » means that the foliation is obtained integrating $L(x)$.

One can think of a vertical foliation as a local deformation of the genuinely vertical foliation, $\left\{I_{\phi}, \phi \in \mathbb{R} / 2 \pi \mathbb{Z}\right\}$

Physical Results

For $t \in[0,1)$ the holonomy transformation $g_{t}: \mathcal{B} \rightarrow \mathbb{T} \times\{t\}$ obtained by flowing along \mathcal{F}^{c}.

Physical Results

For $t \in[0,1)$ the holonomy transformation $g_{t}: \mathcal{B} \rightarrow \mathbb{T} \times\{t\}$ obtained by flowing along \mathcal{F}^{c}.

Theorem (BLR)

The asymptotic distribution of Lee-Yang zeros at a temperature $t_{0} \in[0,1)$ is given by under holonomy by $\mu_{t}=\left(g_{t}\right)_{*}\left(\mu_{0}\right)$ where μ_{0} be the Lebesgue measure on \mathcal{B}.

Geometric view of Lee-Yang distributions for the DHL

Geometric view of Lee-Yang distributions for the DHL

Geometric view of Lee-Yang distributions for the DHL

Geometric view of Lee-Yang distributions for the DHL

Geometric view of Lee-Yang distributions for the DHL

Geometric view of Lee-Yang distributions for the DHL

Horizontal expansion (the main part of the proof)

Proposition

\mathcal{R} expands the genuinely horizontal direction by a factor of at least 2. Precisely, there exists $c>0$ such that:

$$
\forall x \in \mathcal{C} \backslash\left\{\alpha_{ \pm}\right\}, \forall n \in \mathbb{N},\left\|D_{x} \mathcal{R}^{n}\left(h_{x}\right)\right\| \geq c 2^{n}\left\|h_{x}\right\|
$$

Horizontal expansion (the main part of the proof)

Proposition

\mathcal{R} expands the genuinely horizontal direction by a factor of at least 2. Precisely, there exists $c>0$ such that:

$$
\forall x \in \mathcal{C} \backslash\left\{\alpha_{ \pm}\right\}, \forall n \in \mathbb{N},\left\|D_{x} \mathcal{R}^{n}\left(h_{x}\right)\right\| \geq c 2^{n}\left\|h_{x}\right\|
$$

There are three different proofs expansion for vectors $v \in \mathcal{K}(x)$:

1. A purely computational proof.

Horizontal expansion (the main part of the proof)

Proposition

\mathcal{R} expands the genuinely horizontal direction by a factor of at least 2. Precisely, there exists $c>0$ such that:

$$
\forall x \in \mathcal{C} \backslash\left\{\alpha_{ \pm}\right\}, \forall n \in \mathbb{N},\left\|D_{x} \mathcal{R}^{n}\left(h_{x}\right)\right\| \geq c 2^{n}\left\|h_{x}\right\|
$$

There are three different proofs expansion for vectors $v \in \mathcal{K}(x)$:

1. A purely computational proof.
2. A geometric proof using complex methods for $\mathcal{R}: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$.

Horizontal expansion (the main part of the proof)

Proposition

\mathcal{R} expands the genuinely horizontal direction by a factor of at least 2. Precisely, there exists $c>0$ such that:

$$
\forall x \in \mathcal{C} \backslash\left\{\alpha_{ \pm}\right\}, \forall n \in \mathbb{N},\left\|D_{x} \mathcal{R}^{n}\left(h_{x}\right)\right\| \geq c 2^{n}\left\|h_{x}\right\|
$$

There are three different proofs expansion for vectors $v \in \mathcal{K}(x)$:

1. A purely computational proof.
2. A geometric proof using complex methods for $\mathcal{R}: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$.
3. A combinatorial proof using a "Lee-Yang Theorem with Boundary conditions" and the fundamental symmetry of the Ising model under $z \mapsto 1 / z$.

Combinatorial proof of expansion, part |

Idea: Map forward a horizontal line $\mathcal{P}_{t_{0}}:=\left\{t=t_{0}\right\}$ under \mathcal{R}^{n}, then project vertically onto \mathcal{P}_{0}. Sends the circle $\mathcal{S}_{t_{0}}:=\mathcal{P}_{t_{0}} \cap \mathcal{C}$ to the circle \mathcal{S}_{0}.

Combinatorial proof of expansion, part I

Idea: Map forward a horizontal line $\mathcal{P}_{t_{0}}:=\left\{t=t_{0}\right\}$ under \mathcal{R}^{n}, then project vertically onto \mathcal{P}_{0}. Sends the circle $\mathcal{S}_{t_{0}}:=\mathcal{P}_{t_{0}} \cap \mathcal{C}$ to the circle \mathcal{S}_{0}.

Combinatorial proof of expansion, part I

Idea: Map forward a horizontal line $\mathcal{P}_{t_{0}}:=\left\{t=t_{0}\right\}$ under \mathcal{R}^{n}, then project vertically onto \mathcal{P}_{0}. Sends the circle $\mathcal{S}_{t_{0}}:=\mathcal{P}_{t_{0}} \cap \mathcal{C}$ to the circle \mathcal{S}_{0}.

Combinatorial proof of expansion, part I

Idea: Map forward a horizontal line $\mathcal{P}_{t_{0}}:=\left\{t=t_{0}\right\}$ under \mathcal{R}^{n}, then project vertically onto \mathcal{P}_{0}. Sends the circle $\mathcal{S}_{t_{0}}:=\mathcal{P}_{t_{0}} \cap \mathcal{C}$ to the circle \mathcal{S}_{0}.

Use complex extension to prove that $\pi \circ \mathcal{R}^{n}: \mathcal{S}_{t_{0}} \rightarrow \mathcal{S}_{0}$ is expanding.

Combinatorial proof of expansion, part II

Recall the a semiconjugacy

$$
\begin{array}{ccc}
\mathbb{C P}^{2} \xrightarrow{\mathcal{R}} & \mathbb{C P}^{2} \\
\downarrow \Psi & & \\
\downarrow & & \downarrow \\
\mathbb{C P}^{2} \xrightarrow{R} & \mathbb{C P}^{2}
\end{array}
$$

Combinatorial proof of expansion, part II

Recall the a semiconjugacy

$$
\begin{array}{ccc}
\mathbb{C P}^{2} \xrightarrow{\mathcal{R}} & \mathbb{C P}^{2} \\
\downarrow^{*} & & \downarrow^{*} \\
\mathbb{C P}^{2} \xrightarrow{R} & \mathbb{C P}^{2}
\end{array}
$$

where

$$
\begin{gathered}
R:[U: V: W] \rightarrow\left[\left(U^{2}+V^{2}\right)^{2}: V^{2}(U+W)^{2}:\left(V^{2}+W^{2}\right)^{2}\right] \\
\mathcal{R}:(z, t) \rightarrow\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right)
\end{gathered}
$$

Combinatorial proof of expansion, part II

Recall the a semiconjugacy

\[

\]

where

$$
\begin{gathered}
R:[U: V: W] \rightarrow\left[\left(U^{2}+V^{2}\right)^{2}: V^{2}(U+W)^{2}:\left(V^{2}+W^{2}\right)^{2}\right] . \\
\mathcal{R}:(z, t) \rightarrow\left(\frac{z^{2}+t^{2}}{z^{-2}+t^{2}}, \frac{z^{2}+z^{-2}+2}{z^{2}+z^{-2}+t^{2}+t^{-2}}\right) .
\end{gathered}
$$

Ψ induces a conjugacy ${ }^{4}$ between $\mathcal{R}: \mathcal{C} \rightarrow \mathcal{C}$ and $R: C \rightarrow C$, where $C=\Psi(\mathcal{C})$ is some appropriate Möbius band.

Combinatorial proof of expansion, part II
The two sets of coordinates are relevant for studying R :

Combinatorial proof of expansion, part II
The two sets of coordinates are relevant for studying R :

1. The physical (z, t) coordinates.

Combinatorial proof of expansion, part II

The two sets of coordinates are relevant for studying R :

1. The physical (z, t) coordinates.

Advantage : the Lee-Yang cylinder $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ is simple.

Combinatorial proof of expansion, part II

The two sets of coordinates are relevant for studying R :

1. The physical (z, t) coordinates.

Advantage : the Lee-Yang cylinder $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ is simple.
Problem : \mathcal{R} is not algebraicly stable - hard to keep track of degrees of curves under iteration.

Combinatorial proof of expansion, part II

The two sets of coordinates are relevant for studying R :

1. The physical (z, t) coordinates.

Advantage : the Lee-Yang cylinder
$\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ is simple.
Problem : \mathcal{R} is not algebraicly stable - hard to keep track of degrees of curves under iteration.
2. The projective coordinates $[U: V: W]$

Combinatorial proof of expansion, part II

The two sets of coordinates are relevant for studying R :

1. The physical (z, t) coordinates. Advantage : the Lee-Yang cylinder $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ is simple.
Problem: \mathcal{R} is not algebraicly stable - hard to keep track of degrees of curves under iteration.
2. The projective coordinates $[U: V: W]$

Advantage : R is algebraicly stable, has an easier expression and it's components have a physical meaning.

Combinatorial proof of expansion, part II

The two sets of coordinates are relevant for studying R :

1. The physical (z, t) coordinates.

Advantage : the Lee-Yang cylinder $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ is simple.
Problem: \mathcal{R} is not algebraicly stable - hard to keep track of degrees of curves under iteration.
2. The projective coordinates $[U: V: W]$

Advantage : R is algebraicly stable, has an easier expression and it's components have a physical meaning.
Problem: The Lee-Yang cylinder becomes a Moebius band C. Using affine coordinates $u=\frac{U}{V}$ and $w=\frac{W}{V}, C$ is the closure of:

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\}
$$

in $\mathbb{C P}^{2}$.

Combinatorial proof of expansion, part II

The two sets of coordinates are relevant for studying R :

1. The physical (z, t) coordinates.

Advantage : the Lee-Yang cylinder $\mathcal{C}:=\{(z, t):|z|=1, t \in[0,1]\}$ is simple.
Problem: \mathcal{R} is not algebraicly stable - hard to keep track of degrees of curves under iteration.
2. The projective coordinates $[U: V: W]$

Advantage : R is algebraicly stable, has an easier expression and it's components have a physical meaning.
Problem : The Lee-Yang cylinder becomes a Moebius band C. Using affine coordinates $u=\frac{U}{V}$ and $w=\frac{W}{V}, C$ is the closure of:

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\}
$$

in $\mathbb{C P}^{2}$.
Here, we will have to juggle between both coordinate systems.

Combinatorial proof of expansion, part III

The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\} .
$$

in $\mathbb{C P}^{2}$.

Combinatorial proof of expansion, part III

The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\} .
$$

in $\mathbb{C P}^{2}$.

Combinatorial proof of expansion, part III

The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\} .
$$

in $\mathbb{C P}^{2}$.
Horizontal line $\mathcal{P}_{t_{0}}$ becomes conic $P_{t_{0}}:=\left\{u v=t_{0}^{-2}\right\}=\Psi\left(\mathcal{P}_{t_{0}}\right)$.

Combinatorial proof of expansion, part III

The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\} .
$$

in $\mathbb{C P}^{2}$.
Horizontal line $\mathcal{P}_{t_{0}}$ becomes conic $P_{t_{0}}:=\left\{u v=t_{0}^{-2}\right\}=\Psi\left(\mathcal{P}_{t_{0}}\right)$.
Horizontal line \mathcal{P}_{0} becomes line at infinity
$P_{0}:=\{V=0\}=\Psi\left(\mathcal{P}_{0}\right)$.

Combinatorial proof of expansion, part III

The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\} .
$$

in $\mathbb{C P}^{2}$.
Horizontal line $\mathcal{P}_{t_{0}}$ becomes conic $P_{t_{0}}:=\left\{u v=t_{0}^{-2}\right\}=\Psi\left(\mathcal{P}_{t_{0}}\right)$.
Horizontal line \mathcal{P}_{0} becomes line at infinity
$P_{0}:=\{V=0\}=\Psi\left(\mathcal{P}_{0}\right)$.
Horizontal circle $\mathcal{S}_{t_{0}}$ becomes $S_{t_{0}}=\left\{|u|=t_{0}^{-1}\right\}=\Psi\left(\mathcal{S}_{t_{0}}\right)$.

Combinatorial proof of expansion, part III

The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\} .
$$

in $\mathbb{C P}^{2}$.
Horizontal line $\mathcal{P}_{t_{0}}$ becomes conic $P_{t_{0}}:=\left\{u v=t_{0}^{-2}\right\}=\Psi\left(\mathcal{P}_{t_{0}}\right)$.
Horizontal line \mathcal{P}_{0} becomes line at infinity
$P_{0}:=\{V=0\}=\Psi\left(\mathcal{P}_{0}\right)$.
Horizontal circle $\mathcal{S}_{t_{0}}$ becomes $S_{t_{0}}=\left\{|u|=t_{0}^{-1}\right\}=\Psi\left(\mathcal{S}_{t_{0}}\right)$.
Vertical projection π becomes radial projection $\operatorname{pr}(u, w)=w / u$ out to the line at infinity P_{0}.

Combinatorial proof of expansion, part III

The Mobius band C is the closure of

$$
C_{0}=\left\{(u, w) \in \mathbb{C}^{2}: w=\bar{u},|u| \geq 1\right\}
$$

in $\mathbb{C P}^{2}$.
Horizontal line $\mathcal{P}_{t_{0}}$ becomes conic $P_{t_{0}}:=\left\{u v=t_{0}^{-2}\right\}=\Psi\left(\mathcal{P}_{t_{0}}\right)$.
Horizontal line \mathcal{P}_{0} becomes line at infinity
$P_{0}:=\{V=0\}=\Psi\left(\mathcal{P}_{0}\right)$.
Horizontal circle $\mathcal{S}_{t_{0}}$ becomes $S_{t_{0}}=\left\{|u|=t_{0}^{-1}\right\}=\Psi\left(\mathcal{S}_{t_{0}}\right)$.
Vertical projection π becomes radial projection $\operatorname{pr}(u, w)=w / u$ out to the line at infinity P_{0}.

We will show that pro $R^{n}: P_{t_{0}} \rightarrow P_{0}$ expands that circle $S_{t_{0}}$.

Combinatorial proof of expansion, part IV

Harder to parametrize a line in the projective coordinates \rightarrow back to the physical coordinates.

Combinatorial proof of expansion, part IV

Harder to parametrize a line in the projective coordinates \rightarrow back to the physical coordinates.
Suffices to parameterize $P_{t_{0}}$ by $\Psi: \mathcal{P}_{t_{0}} \rightarrow P_{t_{0}}$ and show that

Combinatorial proof of expansion, part IV

Harder to parametrize a line in the projective coordinates \rightarrow back to the physical coordinates.
Suffices to parameterize $P_{t_{0}}$ by $\Psi: \mathcal{P}_{t_{0}} \rightarrow P_{t_{0}}$ and show that

$$
\operatorname{pr} \circ R^{n} \circ \Psi: \mathcal{P}_{t_{0}} \rightarrow P_{0}
$$

expands that circle $\mathcal{S}_{t_{0}}$.

Combinatorial proof of expansion, part IV

Harder to parametrize a line in the projective coordinates \rightarrow back to the physical coordinates.
Suffices to parameterize $P_{t_{0}}$ by $\Psi: \mathcal{P}_{t_{0}} \rightarrow P_{t_{0}}$ and show that

$$
\operatorname{pr} \circ R^{n} \circ \Psi: \mathcal{P}_{t_{0}} \rightarrow P_{0}
$$

expands that circle $\mathcal{S}_{t_{0}}$.
We have:

$$
\psi_{n}(z):=\operatorname{pr} \circ R^{n} \circ \Psi\left(z, t_{0}\right)=\frac{W_{n}\left(z, t_{0}\right)}{U_{n}\left(z, t_{0}\right)},
$$

where W_{n} and U_{n} are the conditional partition functions from the derivation of R.

Combinatorial proof of the expansion: Blaschke products

A finite Blaschke product is a function of the type:

$$
B(z): \mathbb{C} \rightarrow \mathbb{C}, \quad z \mapsto \prod \frac{z-a_{i}}{1-\overline{a_{i} z}}
$$

where the a_{i} are a finite family of complex numbers.

Combinatorial proof of the expansion: Blaschke products

A finite Blaschke product is a function of the type:

$$
B(z): \mathbb{C} \rightarrow \mathbb{C}, \quad z \mapsto \prod \frac{z-a_{i}}{1-\overline{a_{i} z}}
$$

where the a_{i} are a finite family of complex numbers.
Lemma
A Blaschke product $B: \mathbb{C} \rightarrow \mathbb{C}$ all of whose zeros lie in the unit disc and vanishing at the origin to order k expands the Euclidean metric on the cirlce by at least k.

Combinatorial proof of the expansion: Blaschke products

A finite Blaschke product is a function of the type:

$$
B(z): \mathbb{C} \rightarrow \mathbb{C}, \quad z \mapsto \prod \frac{z-a_{i}}{1-\overline{a_{i} z}}
$$

where the a_{i} are a finite family of complex numbers.

Lemma

A Blaschke product $B: \mathbb{C} \rightarrow \mathbb{C}$ all of whose zeros lie in the unit disc and vanishing at the origin to order k expands the Euclidean metric on the cirlce by at least k.

Claim: $\psi_{n}: \mathbb{C} \rightarrow \mathbb{C}$ is an Blaschke product preserving the unit disc \mathbb{D}, expanding the circle $\mathbb{T}=\partial \mathbb{D}$ by a factor of 2^{n+1}.

Conditional partition functions and their symmetries

Other advantage of (z, t) coordinates : physical meaning of R and the Lee-Yang theorem!

Conditional partition functions and their symmetries

Other advantage of (z, t) coordinates : physical meaning of R and the Lee-Yang theorem!

$$
\begin{aligned}
U_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=+\mathbf{1}} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=+1} t^{-l(\sigma) / 2} z^{-M(\sigma)} \\
& =a_{d}^{+}(t) z^{d}+\cdots+a_{-d}^{+}(t) z^{-d},
\end{aligned}
$$

Conditional partition functions and their symmetries

 Other advantage of (z, t) coordinates : physical meaning of R and the Lee-Yang theorem!$$
\begin{aligned}
U_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=+1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=+1} t^{-l(\sigma) / 2} z^{-M(\sigma)} \\
& =a_{d}^{+}(t) z^{d}+\cdots+a_{-d}^{+}(t) z^{-d}, \\
W_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=-1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=-1} t^{-l(\sigma) / 2} z^{-M(\sigma)} \\
& =a_{d}^{-}(t) z^{d}+\cdots+a_{-d}^{-}(t) z^{-d} .
\end{aligned}
$$

Conditional partition functions and their symmetries

 Other advantage of (z, t) coordinates : physical meaning of R and the Lee-Yang theorem!$$
\begin{aligned}
U_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=+1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=+1} t^{-l(\sigma) / 2} z^{-M(\sigma)} \\
& =a_{d}^{+}(t) z^{d}+\cdots+a_{-d}^{+}(t) z^{-d}, \\
W_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=-1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=-1} t^{-l(\sigma) / 2} z^{-M(\sigma)} \\
& =a_{d}^{-}(t) z^{d}+\cdots+a_{-d}^{-}(t) z^{-d} .
\end{aligned}
$$

Remarks:

1. Fundamental symmetry of the Ising model under $z \mapsto 1 / z$ becomes:

$$
a_{i}^{+}(t)=a_{-i}^{-}(t) \quad \text { for each } i=-d \ldots d
$$

Conditional partition functions and their symmetries

 Other advantage of (z, t) coordinates : physical meaning of R and the Lee-Yang theorem!$$
\begin{aligned}
U_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=+1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=+1} t^{-l(\sigma) / 2} z^{-M(\sigma)} \\
& =a_{d}^{+}(t) z^{d}+\cdots+a_{-d}^{+}(t) z^{-d}, \\
W_{n}(z, t) & =\sum_{\sigma(a)=\sigma(b)=-1} W(\sigma)=\sum_{\sigma(a)=\sigma(b)=-1} t^{-l(\sigma) / 2} z^{-M(\sigma)} \\
& =a_{d}^{-}(t) z^{d}+\cdots+a_{-d}^{-}(t) z^{-d} .
\end{aligned}
$$

Remarks:

1. Fundamental symmetry of the Ising model under $z \mapsto 1 / z$ becomes:

$$
a_{i}^{+}(t)=a_{-i}^{-}(t) \quad \text { for each } i=-d \ldots d
$$

2. Since Γ_{n} has valence 2^{n} at marked vertices a and b we have

$$
a_{i}^{-}(t)=0 \quad \text { for } i<-4^{n}+2^{n+1}
$$

Reason for 2: With -1 spins at the marked vertices a, b, we can't get more than $4^{n}-2^{n+1}$ edges with ++ , so $M(\sigma) \leq 4^{n}-2^{n+1}$

Combinatorial proof of expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

Combinatorial proof of expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

$$
\begin{aligned}
W_{n}(z) & =z^{-4^{n}+2^{n+1}} \prod\left(z-b_{i}\right) \\
U_{n}(z) & =z^{-4^{n}} \prod\left(1-b_{i} z\right)=z^{-4^{n}} \prod\left(1-\overline{b_{i}} z\right)
\end{aligned}
$$

Combinatorial proof of expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

$$
\begin{aligned}
W_{n}(z) & =z^{-4^{n}+2^{n+1}} \prod\left(z-b_{i}\right) \\
U_{n}(z) & =z^{-4^{n}} \prod\left(1-b_{i} z\right)=z^{-4^{n}} \prod\left(1-\overline{b_{i}} z\right)
\end{aligned}
$$

We find that

$$
\psi_{n}(z)=\frac{W_{n}(z)}{U_{n}(z)}=z^{2^{n+1}} \prod \frac{z-b_{i}}{1-\overline{b_{i}} z}
$$

is a Blaschke product with 2^{n+1} zeros at $z=0$.

Combinatorial proof of expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

$$
\begin{aligned}
W_{n}(z) & =z^{-4^{n}+2^{n+1}} \prod\left(z-b_{i}\right) \\
U_{n}(z) & =z^{-4^{n}} \prod\left(1-b_{i} z\right)=z^{-4^{n}} \prod\left(1-\overline{b_{i}} z\right)
\end{aligned}
$$

We find that

$$
\psi_{n}(z)=\frac{W_{n}(z)}{U_{n}(z)}=z^{2^{n+1}} \prod \frac{z-b_{i}}{1-\overline{b_{i}} z}
$$

is a Blaschke product with 2^{n+1} zeros at $z=0$.
Are the other zeros b_{i} within the unit disc \mathbb{D} ?

Combinatorial proof of expansion, part IV

Factor $U_{n}(z) \equiv U_{n}\left(z, t_{0}\right)$ and $W_{n}(z) \equiv W_{n}\left(z, t_{0}\right)$ as

$$
\begin{aligned}
W_{n}(z) & =z^{-4^{n}+2^{n+1}} \prod\left(z-b_{i}\right) \\
U_{n}(z) & =z^{-4^{n}} \prod\left(1-b_{i} z\right)=z^{-4^{n}} \prod\left(1-\overline{b_{i}} z\right)
\end{aligned}
$$

We find that

$$
\psi_{n}(z)=\frac{W_{n}(z)}{U_{n}(z)}=z^{2^{n+1}} \prod \frac{z-b_{i}}{1-\overline{b_{i}} z}
$$

is a Blaschke product with 2^{n+1} zeros at $z=0$.
Are the other zeros b_{i} within the unit disc \mathbb{D} ?
If yes, then $\psi_{n}(z)$ is a Blaschke product that expands the circle \mathbb{T} by at least 2^{n+1}

Lee-Yang Theorem with Boundary conditions

S is the vertices in red.

Theorem (Bleher, Lyubich, Roeder)
Consider a ferromagnetic Ising model on a connected graph 「 and let $\sigma_{S} \equiv-1$ on a nonempty subset S of the vertex set V.

Lee-Yang Theorem with Boundary conditions

S is the vertices in red.

Theorem (Bleher, Lyubich, Roeder)
Consider a ferromagnetic Ising model on a connected graph 「 and let $\sigma_{S} \equiv-1$ on a nonempty subset S of the vertex set V.
Then, for any temperature $t \in(0,1)$ the Lee-Yang zeros $z_{i}^{-}(t)$ of the conditional partition function $Z_{\Gamma \mid \sigma_{S}}$ lie inside the open disc \mathbb{D}.

[^0]: ${ }^{1}$ A.A. Migdal. Recurrence equations in gauge field theory. JETP, (1975).
 ${ }^{2}$ L. P. Kadanoff. Notes on Migdal's recursion formulae. Ann. Phys., (1976).
 ${ }^{3}$ B. Derrida, L. De Seze, and C. Itzykson, Fractal structure of zeros in hierarchical models, J. Statist. Phys. (1983).

