Iterated Monodromy Groups and Self-similar Groups

Hongming Nie

Indiana University Bloomington

IUPUI, August 2016

Hongming Nie (Indiana University Bloomingtolterated Monodromy Groups and Self-similar (

IUPUI, August 2016 1 / 21

 V. Nekrashevych, Iterated Monodromy Groups. http://www.math.tamu.edu/ nekrash/Preprints/img.pdf

< A

∃ ▶ ∢

< 17 ▶

Some reasons to study iterated monodromy groups:

- algebraic invariants of topological dynamical systems;
- encoding combinatorial information about the dynamical systems;
- interesting from the point of group theory.

- Definition
- Examples
- Computation
- Examples

Setup:

- Let *M* be a path connected and locally path connected topological space.
- 2 Let $M_1 \subset M$ and $p: M_1 \to M$ be a degree d > 1 covering map (partial self-covering of M).
- **③** Consider the *n*-th iterates $p^n : M_n \to M$.
- Choose a point t ∈ M and define the rooted tree of preimages T_t. The vertex set is ^{||} p⁻ⁿ(t) and a vertex z ∈ p⁻⁽ⁿ⁺¹⁾(t) is connected by an edge with the vertex p(z) ∈ p⁻ⁿ(t).

A D b 4 A b

The fundamental group $\pi_1(M, t)$ acts on the levels $p^{-n}(t)$ of the tree T_t by the monodromy action $F_n : \pi_1(M, t) \to Sym(p^{-n}(t))$ such that for $z \in p^{-n}(t)$ and $\gamma \in \pi_1(M, t)$, $F_n(\gamma)(z)$ is the endpoint of the unique lift of γ by p^n starting at z.

It induces an action of $\pi_1(M, t)$ on the tree T_t . This action is called the iterated monodromy action.

Definition

The iterated monodromy group IMG(p) of p is the quotient of $\pi_1(M, t)$ by the kernel of the iterated monodromy action, that is,

$$\mathit{IMG}(p) = rac{\pi_1(M, t)}{\bigcap\limits_{n \in \mathbb{N}} \mathit{Ker}(F_n)}.$$

IMG(p), as an action, does not depend on the choice of the base point $t \in M$.

A D M A A A M M

Example 1: double self-covering of the circle. $p : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ such that p(x) = 2x. Pick t = 0. $\pi_1(\mathbb{R}/\mathbb{Z}, t) = \langle \gamma \rangle \cong \mathbb{Z}$. $\bigcap_{n \in \mathbb{N} \atop T_t} Ker(F_n) = \{1\}$, since γ acts as a transitive cycle on every level of T_t . So, *IMG*(p) $\cong \mathbb{Z}$. Introduce some "coordinates" on the tree T_t . Want:

- Vertices of T_t are encoded by finite words over an alphabet X.
- 2 The root is the empty word \emptyset .
- Output A vertex represented by a word v is connected to the vertices of the form vx for x ∈ X.

Denote by X^* the set of all finite words over X seen in T_t .

Encoding:

Let $|X| = \deg p$. Choose a bijection $\Lambda : X \to p^{-1}(t)$ and a path $\ell(x)$ from t to $\Lambda(x)$ for every $x \in X$.

Set $\Lambda(\emptyset) = t$ and the map $\Lambda : X^* \to T_t$ inductively by the rule:

 $\Lambda(xv)$ is the end of the $p^{|v|}$ -lift of $\ell(x)$ starting at $\Lambda(v)$.

Identify the tree T_t and X^* by Λ .

Theorem

Let $\gamma \in \pi_1(M, t)$. For $x \in X$, let γ_x be the lift of γ by p starting at x and y be the end of γ_x . Then for every $v \in X^*$, we have

 $\gamma(xv) = y(\ell(x)\gamma_x\ell(y)^{-1})(v).$

Example 1: The adding machine.

$$p: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\} \ p(z) = z^2.$$

Choose basepoint $t = 1$. Then $p^{-1}(t) = \{1, -1\}$.

Let $X = \{0, 1\}.$

Let $\ell(\mathbb{O})$ be the trivial path at the basepoint and $\ell(\mathbb{1})$ be the unit upper half-circle.

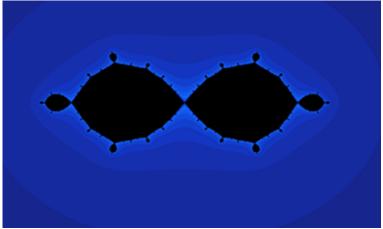
Let γ be the unit circle based at t with the positive orientation. Then

$$\gamma(\mathbb{O}\mathbf{v}) = \mathbb{1}\mathbf{v},$$

$$\gamma(\mathbb{1}\mathbf{v}) = \mathbb{O}\gamma(\mathbf{v}).$$

Iterated Monodromy Groups

Example 2: The polynomial $f(z) = -\frac{z^3}{2} + \frac{3z}{2}$. *Crit*(f) = {1, -1, ∞}, post-critical set $P_f = \{1, -1, \infty\}$. Then $f : \mathbb{C} \setminus f^{-1}(\{\pm 1\}) \to \mathbb{C} \setminus \{\pm 1\}$ is a partial self-covering.



IUPUI, August 2016 15 / 21

Pick basepoint t = 0. Then $f^{-1}(t) = \{0, \sqrt{3}, -\sqrt{3}\}$. Take $X = \{\mathbb{O}, \mathbb{1}, 2\}$. Choose a, b the generators of $\pi_1(\mathbb{C} \setminus \{\pm 1\}, 0)$. We can get $a(\mathbb{O}v) = \mathbb{1}v, a(\mathbb{1}v) = \mathbb{O}a(v), a(2v) = 2v,$ $b(\mathbb{O}v) = 2v, b(\mathbb{1}v) = \mathbb{1}v, b(2v) = \mathbb{O}b(v),$

< 🗇 🕨

Definition

A group *G* acting faithfully on the set X^* is called self-similar if for every $g \in G$ and every $x \in X$ there exists $h \in G$ such that

$$g(xw) = g(x)h(w)$$

for all $w \in X^*$.

Remarks:

- If *G* is self-similar, then for every $v \in X^*$ and every $g \in G$, there exists $h \in G$ such that g(vw) = g(v)h(w) for all $w \in X^*$.
- The element *h* is uniquely defined, is called section (or restriction) of *g* in *v* and is denoted *g*|_v.

.

A D M A A A M M

Take $X = \{1, \dots, d\}$ and let *G* be self-similar. Consider the map $\Phi : G \to S_d \ltimes G^d = S_d \wr G$ with $\Phi(g) = \pi(g|_1, \dots, g|_d)$, where π is the action of *g* on *X*. The map Φ is a homomorphism and is called the wreath recursion associated with the self-similar group *G*. In general, a wreath recursion on a group *G* is any homomorphism $\Phi : G \to S_d \wr G$.

Remarks:

- Two wreath recursions $\Phi_1, \Phi_2 : G \to S_d \wr G$ are equivalent if there exists an inner automorphism τ of $S_d \wr G$ such that $\Phi_2 = \tau \circ \Phi_1$.
- 2 Every wreath recursion defines an action on the tree $\{1, \dots, d\}^*$. If $\Phi(g) = \pi(g_1, \dots, g_d)$, then we put $g(xv) = \pi(x)g_x(v)$ for all $v \in \{1, \dots, d\}^*$ and $x \in \{1, \dots, d\}$.
- Solution The faithful self-similar group defined by the wreath recursion Φ is the quotient of *G* by the kernel K_{Φ} of the associated action.
- If G is finitely generated, then the wreath recursion is determined by its values on the generators.

IUPUI. August 2016

3

20/21

It is not known if every finitely generated self-similar group has solvable word problem.

Thank you

イロト イヨト イヨト イヨト

æ