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Motivation

Montel's Theorem is a powerful tool in one dimensional complex

dynamics.

However, in higher dimensions, Montel's Theorem requires much

stronger hypotheses, and is not useful for dynamics.

Nessim Sibony: �I observed in 1981 that one could treat some

aspects of the elementary theory of dynamics of polynomials

without recourse to the theorem of Montel mentioned above. What

replaces it is a compactness theorem for subharmonic functions

that are locally bounded above.�

We will try to understand

this in the case of one

dimensional complex

dynamics.
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Complex Analysis - Montel's Theorem

Let S be a Riemann surface and F be a family of holomorphic

functions from S to Ĉ.

De�nition
F is called a normal family if every in�nite sequence of maps from

F has a subsequence which converges locally uniformly.

Montel's Theorem
If there are 3 distinct points {a, b, c} ⊂ Ĉ such that,

f (S) ⊆ Ĉ \ {a, b, c} for every f ∈ F , then F is a normal family.
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Setting
Let p(z) be a polynomial of degree ≥ 2.

De�nition
The Fatou set Fp is the maximal open set where

{pn(z) : n = 1, 2, 3, ...} form a normal family.

The Julia set Jp is the complement of the Fatou set.

Informally, p behaves stably on Fp, and chaotically on Jp.

Figure: z2 + (−.122 + .745i) Figure: z2 + i
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Setting

De�nition
The �lled Julia set Kp is the set of z ∈ C such that the orbit of z is

bounded.

Lemma
Kp is compact with connected complement, and ∂Kp = Jp.
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Exceptional Point

De�nition
Given a polynomial p(z), a point z0 ∈ Ĉ is called exceptional for p
if the set of preimages of all forward images of z0 is �nite.

Example: p(z) = z2 + c always has an exceptional point at ∞.

It has an additional exceptional point i� c = 0.

When c = 0, the other exceptional point is 0.

Theorem
If p : Ĉ→ Ĉ is a polynomial of degree ≥ 2, then there can be at

most 2 exceptional points. Moreover, if they exist, they must be

(super)attracting, hence belong to the Fatou set.

The proof is an application of Montel's Theorem.
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Transitivity of Julia set

Theorem (Transitivity)

Let z be an arbitrary point of the Julia set Jp and let U be an

arbitrary neighborhood of z . Then the union V =
⋃∞

n=0
pn(U)

contains the whole Riemann sphere except possibly the 2

exceptional points, if they exist.

U

Figure: Iterating the neighborhood U.
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arbitrary neighborhood of z . Then the union V =
⋃∞

n=0
pn(U)

contains the whole Riemann sphere except possibly the 2

exceptional points, if they exist.

F := {pn : U → Ĉ} is a family of holomorphic functions.

Notice V =
⋃∞

n=0
pn(U) is forward invariant.

If Ĉ− V has more than two points,

then since pn(U) ⊂ V , Montel ⇒ U ⊂ Fp.

But U contains a point in Jp.

Contradiction.
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Transitivity - rephrased

Theorem (Transitivity)

Let p(z) be a polynomial and let z0 ∈ Jp. Then for any w ∈ Ĉ
which is not an exceptional point, there exists a sequence of

preimages of w that converges to z0.

z0

w
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Subharmonic functions

Let Ω be a domain in C.

De�nition: u : Ω→ [−∞,∞) is subharmonic (SH) if:

1. u is upper semicontinuous, i.e

∀z0 ∈ Ω, lim supz→z0 u(z) ≤ u(z0),

2. ∀z ∈ Ω,∀r > 0 so that D(z , r) ⊂ Ω, we have

u(z) ≤ 1

2π

∫
2π
0

u(z + re iθ)dθ (submean value property),

3. u 6≡ −∞.

Three properties of subharmonic functions which will be used:

1. max of two SH functions is SH.

2. Uniform limit of SH functions is SH.

3. if u is SH, p is holomorphic, then u ◦ p is SH.

Example: u(z) = log |z |,
v(z) = log+ |z | := max{0, log |z |}.
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Distributions and subharmonic functions

De�nition
A continuous linear functional on C∞

0
(Ω) is called a distribution.

The space of distribution is denoted by D ′(Ω).

A subharmonic function u is locally integrable.

Hence we can de�ne a distribution by 〈u, φ〉 :=
∫
φ · u dLeb.

We can take the Laplacian of a SH function (in the distributional

sense) by 〈∆u, φ〉 :=
∫

∆φ · u dLeb.

If u is in fact a smooth function, then the distributional Laplacian

coincides with the classical Laplacian by Stoke's theorem.

〈∆u, φ〉 =

∫
∆φ · u dLeb =

∫
φ ·∆u dLeb.

Notice if u ∈ L1loc(R2), then u dLeb gives a signed measure.
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If h is SH, then ∆h is a non-negative measure. Conversely, if µ is a

distribution such that ∆µ is a non-negative measure, then µ is

given by a SH function. i.e there is a SH function v such that

〈µ, φ〉 =
∫
φ · v dLeb.
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Hartogs' Lemma: an analogy of Montel's Theorem

Compactness theorem and Hartogs' Lemma

Let vj be a sequence of subharmonic functions on a domain Ω ∈ C,
which have a uniform upper bound on any compact set. Then

(a) if vj does not converge to −∞ uniformly on every compact set

in Ω then there is a subsequence vjk which is convergent in L1loc(Ω).

(b) if v is a subharmonic function and vj → v in D′(Ω), then
vj → v in L1loc(Ω). Moreover,

lim sup
j→∞

vj(z) ≤ v(z).

With the two sides equal and �nite a.e.

Part (b) of above is the classical Hartogs' Lemma.
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Montel's Theorem and Hartogs' Lemma are both compactness

theorems for family of functions.

Let us re-prove transitivity of the Julia set using Hartogs' Lemma.
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Green Function for p(z)

Let us focus on p(z) = z2 + c , where c ∈ C \ {0}.

Let Gn(z) = 1

2n
log+ |pn(z)|.

Gn is SH because it is a composition of log+ |z | (SH) and pn(z)
(holomorphic).

Proposition

G (z) := limn→∞ Gn(z) converges uniformly on C and is SH

(because it is the uniform limit of SH functions). G is called the

Green Function of p.

∆G is zero everywhere except on the Julia set.

µ := 1

2π∆G is a measure supported on the Julia set. (In fact, µ has

important dynamical meaning: it is the unique invariant measure for

p that gives the maximal entropy.)
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Figure: colors indicate rates

of escape

µ assigns mass to any neighborhood of any point of the Julia set.
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Transitivity of Julia set revisited

Recall transitivity of Julia set

Theorem (Transitivity)

Let p(z) be a polynomial and let z0 ∈ Jp. Then for any w ∈ Ĉ
which is not an exceptional point, there exists a sequence of

preimages of w that converges to z0.

z0

w

Let us prove the analog of transitivity in the measure theoretical

sense using compactness theorem and Hartogs' Lemma, instead of

Montel's Theorem.
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Brolin's Theorem

Brolin's Theorem
For all w ∈ C except at most 2 (exceptional) points,

1

2n
(pn)∗δw →

1

2π
∆G .

Notice LHS 1

2π∆ 1

2n
log |pn(z)− w | is a probability measure with

mass equally distributed on the roots of pn(z) = w .

In other words, 1

2π∆ 1

2n
log |pn(z)− w | → 1

2π∆G in the

distributional sense.

Warning: now we have log instead of log+
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Transitivity vs Brolin's Theorem

Theorem (Transitivity)

Let p(z) be a polynomial and let z0 ∈ Jp. Then for any w ∈ Ĉ
which is not an exceptional point, there exists a sequence of

preimages of w that converges to z0.

Brolin's Theorem
For all w ∈ C except at most 2 (exceptional) points,

1

2n
(pn)∗δw →

1

2π
∆G .

Brolin's theorem is the measure theoretic analog:

If we take an arbitrary point w and start pulling back by pn,

then the pull back measure assigns mass the same way as µ does.
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Proof of Brolin's Theorem for p(z) = z2 + c , c 6= 0

To simply notation, let zn := pn(z) and un(z) := 1

2n
log |zn − w |.

Notice 1

2π∆un = 1

2n
(pn)∗δw

Outside of the �lled Julia set, un converges locally uniformly to G .

Take a large enough disc containing Kp. We need to prove

convergence in the disc.

un does not converge locally uniformly to −∞.

By the compactness theorem, for any sequence unj there is a

further subsequence that converges in L1loc to some SH function v .

We will abuse notation and just denote the subsequence as un.

Contradiction hypothesis: Suppose v 6= G . Then they di�er on Kp.

We will derive a contradiction using control of how much iterates of

p can contract the radius of a disc.
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Proof of Brolin's Theorem for p(z) = z2 + c , c 6= 0

Recall G (z) := 1

2n
log+ |pn(z)| measures the rate of escape of z .

Since G ≡ 0 on K , there is some δ > 0 such that {v < −2δ} is a
nonempty open set W .

By Hartogs' Lemma, lim supj→∞ un(x) ≤ v(x), so there is a

precompact open set W0 ⊂W such that 1

2n
log |zn − w | < −δ for

all z0 ∈W0.

So |zn − w | < e−δ2
n
.

Geometrically, pn(z) will map W0 inside a disc of radius e−δ2
n
.

How is that a contradiction?
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Proof of Brolin's Theorem for p(z) = z2 + c , c 6= 0

For any disc of radius r small, pn(D(z , r)) always contains a disc of

radius Ar
√
2
n

for some constant A > 0.

Idea of proof:

Near the critical point, image of disc with radius r contains a disc

of radius b1r
2.

Away from the critical point, image of a disc with radius r contains

a disc of radius b2r .

Since c 6= 0, a disc can only get mapped near the critical point

every other iterate.
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Proof of Brolin's Theorem for p(z) = z2 + c , c 6= 0

From previous slide, we have

D(z•,Ar
√
2
n

) ⊂ pn(W0).

By contradiction hypothesis and Hartogs' lemma, we have

pn(W0) ⊂ D(w , e−δ2
n
).

D(z•,Ar
√
2
n

) ⊂ pn(W0) ⊂ D(w , e−δ2
n
).

For n large, e−δ2
n
< Ar

√
2
n

.

CONTRADICTION!

QED
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Why Hartogs' Lemma?

In higher dimensions, Montel's Theorem requires stronger

hypotheses. For example, see

M. L. Green. The hyperbolicity of the complement of 2n+1

hyperplanes in general position in Pn and related results. Proc.

Amer. Math. Soc., 66(1):p. 109-113, 1977.

M. L. Green. Some Picard theorems for holomorphic maps to

algebraic varieties. Amer. J. Math., 97:p.43-75, 1975.

Hartogs' Lemma still holds with the same hypotheses.

Applications: We can prove analogs of Brolin's theorem to

holomorphic endomorphisms of CP2, or automorphisms of C2. For

example the complex Hénon map.
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