An Extension of Brolin's Theorem & Relevant Tools

Sara Lapan

Northwestern University + UC Riverside

August 15, 2016

Theorem (Brolin, 1965)

If $f(z) = z^{\alpha} + \dots$ is a polynomial of degree $\alpha \ge 2$, then there is an exceptional set \mathcal{E} with $\#\mathcal{E} \le 1$ such that if $a \in \mathbb{C} \setminus \mathcal{E}$, then

$$\frac{1}{\alpha^n} \sum_{f^n(z)=a} \delta_z \to \mu \text{ as } n \to \infty,$$

where μ is harmonic measure on the filled Julia set of f.

- The limit is independent of *a*.
- $\mathcal{E} = \emptyset$ or, if f is affinely conjugate to $z \mapsto z^{\alpha}$, $\mathcal{E} = \{0\}$.
- This result is specific for polynomials in C.

Q. Can Brolin's Theorem extend to other types of maps or spaces?

Yes, with additional assumptions, to:

- \bullet rational maps in $\mathbb{P}^1_{\mathbb{C}}$ by Lyubich & Freire-Lopez-Mañé [1983]
- holomorphic maps in $\mathbb{P}^2_{\mathbb{C}}$ by Favre-Jonsson [2001]

Theorem (Brolin, 1965)

If $f(z) = z^{\alpha} + \dots$ is a polynomial of degree $\alpha \ge 2$, then there is an exceptional set \mathcal{E} with $\#\mathcal{E} \le 1$ such that if $a \in \mathbb{C} \setminus \mathcal{E}$, then

$$\frac{1}{\alpha^n}\sum_{f^n(z)=a}\delta_z\to\mu \text{ as }n\to\infty,$$

where μ is harmonic measure on the filled Julia set of f.

Theorem (Favre-Jonsson, 2001)

Let $f = [P : Q : R] : \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$, where P, Q, R are homogeneous polynomials of degree $\alpha \ge 2$ and let \mathcal{E} be a special set. If S is a positive closed (1, 1) current on \mathbb{P}^2 with mass 1 that behaves nicely on \mathcal{E} , then

$$\frac{1}{\alpha^n}f^{n*}S \to T \text{ as } n \to \infty,$$

where T is the Green current of f.

Overview

What is a current?

Focus on positive closed (1, 1)-currents on $\mathbb{P}^2_{\mathbb{C}}$.

 ${\it @}$ Precise statement of extension of Brolin's Theorem to $\mathbb{P}^2_{\mathbb{C}}$

Focus on Theorem A of "Brolin's Theorem for Curves in Two Complex Dimensions" by Favre-Jonsson from 2001.

Some Ingredients in the proof

Including Hartog's Lemma.

Let *M* be a smooth (\mathbb{R}) manifold of dimension *m*.

Let $D^{p}(M)$ be the space of smooth *p*-forms with compact support on M.

Definition

S is a p-current on M if it is a (continuous) linear functional:

 $S: D^p(M) \to \mathbb{R}.$

Note: The action of S on $\nu \in D^{p}(M)$ is often denoted $\langle S, \nu \rangle$.

Let $D'_p(M)$ be the space of *p*-currents on *M*.

Example 1. *p*-dimensional submanifolds

Let M be a smooth manifold of dimension m.

Let $Z \subset M$ be a closed oriented submanifold of dim p and class C^1 . Geometrically, a p-current can represent integration over Z. The current of integration over Z, [Z], is a p-current defined by:

$$\langle [Z], u \rangle = \int_Z u, \text{ for } u \in D^p(M).$$

A *p*-current $S \in D'_p(M)$ can be expressed as a (m - p)-form:

$$\mathcal{S} = \sum_{|I|=m-p} \mathcal{S}_I dx^I, ext{ where }$$

 $I = (i_1, \ldots, i_{m-p}), \ dx^I = dx_{i_1} \wedge \ldots \wedge dx_{i_{m-p}}, \ \text{and} \ i_1 < \ldots < i_{m-p}.$

Example 2. (m - p)-form

A form $\alpha \in D^{m-p}(M)$ with coefficients in L^1_{loc} defines a p-current:

$$\langle \alpha, \phi \rangle := \int_{\mathcal{M}} \alpha \wedge \phi \text{ for any } \phi \in D^{p}(\mathcal{M})$$

since $\alpha \land \phi \in D^m(M)$ is a volume form.

Consequently, a *p*-current *S* acts on *p*-forms and can act as an (m - p)-form.

We say that S has dimension p and degree m - p.

Extending from ${\mathbb R}$ to ${\mathbb C}$

Each complex variable, z_j , has 2 corresponding real variables and so we have 2 corresponding differentials. In particular, dz_j and $d\overline{z}_j$. Note that dz_i is a (1,0)-form and $d\overline{z}_i$ is a (0,1)-form.

More generally, $\alpha = \sum_{|I|=p,|J|=q} \alpha_{IJ} dz_I \wedge d\overline{z}_J$ is a (p,q)-form and we say that $\alpha \in D^{p,q}$.

Notation: $d = \partial + \overline{\partial}$ and $d^c = \frac{i}{2\pi}(\overline{\partial} - \partial)$, where

$$\partial \alpha = \sum_{k,|I|=p,|J|=q} \frac{\partial \alpha_{IJ}}{dz_k} dz_k \wedge dz_I \wedge d\overline{z}_j \text{ and}$$
$$\overline{\partial} \alpha = \sum_{k,|I|=p,|J|=q} \frac{\partial \alpha_{IJ}}{d\overline{z_k}} d\overline{z}_k \wedge dz_I \wedge d\overline{z}_j.$$

It follows that $dd^c = \frac{i}{\pi} \partial \overline{\partial}$.

For simplicity, we now focus on $M = \mathbb{P}^2_{\mathbb{C}}$. Let z_1 and z_2 be local coordinates on $\mathbb{P}^2_{\mathbb{C}}$.

Let $D^{1,1}(\mathbb{P}^2_{\mathbb{C}})$ be the space of smooth compactly supported (1,1)-forms. Any $\nu \in D^{1,1}(\mathbb{P}^2_{\mathbb{C}})$ can be expressed as:

$$u = \sum_{1 \leq j,k \ \leq 2} \mathsf{a}_{jk} \mathsf{d} \mathsf{z}_j \wedge \mathsf{d} \overline{\mathsf{z}}_k,$$

Definition (For $\mathbb{P}^2_{\mathbb{C}}$)

A (1,1)-current S is a linear functional on $D^{1,1}(\mathbb{P}^2_{\mathbb{C}})$ and can be represented as a (1,1)-form with distributional coefficients.

Closed positive (1, 1)-currents and why they are special.

Definition

Let *S* be a (1,1)-current and express it as $S = i \sum S_{jk} dz_j \wedge d\overline{z}_k$. *S* is **positive** if the distribution $\sum S_{jk} \zeta_j \overline{\zeta}_k \ge 0$ for all $\zeta \in \mathbb{C}^2$.

Definition

A (1,1)-current S is closed if dS = 0 (Recall $dS = (\partial + \overline{\partial})S$).

Why are closed positive (1, 1)-currents special?

Proposition (A.4.1, Sibony – some of the proposition)

 Every positive (1,1)-current is representable by integration. (The distributional coefficients are measurable)

If S is a closed positive (1,1)-current, then ∀z₀ ∈ M, ∃ an open neighborhood U ⊂ M of z₀ and a plurisubharmonic function u on U such that S = dd^cu in U. (Note: u is called a potential of S and dd^c = ⁱ/_π∂∂)

Let S be a positive closed (1, 1)-current on $\mathbb{P}^2_{\mathbb{C}}$ and ω the standard Kahler form on $\mathbb{P}^2_{\mathbb{C}}$ corresponding to the Fubini-Study metric.

Definition

S has unit mass if
$$1 = ||S|| = \int_{\mathbb{P}^2_{\mathbb{C}}} S \wedge \omega$$
.

Let $f : \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^2_{\mathbb{C}}$ be holomorphism of algebraic degree $\alpha \ge 2$. $\Rightarrow f = [P : Q : R], P, Q, R$ homogenenous degree α polynomials.

We are now prepared to revisit FJ's extension of Brolin's Theorem using more precise language.

Theorem (Favre-Jonsson, 2001)

Let $f : \mathbb{P}^2 \to \mathbb{P}^2$ be holomorphism of algebraic degree $\alpha \geq 2$.

Then \exists a set $\mathcal{E} = \mathcal{E}_1 \cup \mathcal{E}_2$, where:

 \mathcal{E}_1 is a totally invariant, algebraic set consisting of $\leq 3 \mathbb{C}$ -lines & \mathcal{E}_2 is a totally invariant (i.e., $f^{-1}(\mathcal{E}_2) = \mathcal{E}_2$), finite set,

and \mathcal{E} has the following property: If S is a positive closed (1,1) current on \mathbb{P}^2 of mass 1 such that

- S does not change any irreducible component of \mathcal{E}_1 ;
- **2** S has a bounded local potential at each point of \mathcal{E}_2 ;

then we have the convergence

*

$$\frac{1}{\alpha^n} f^{n*} S \to T \text{ as } n \to \infty,$$

where T is the Green current of f.

Part 1 of Proof of FJ Theorem

Let ω be the Fubini-Study Kahler form on $\mathbb{P}^2_{\mathbb{C}}$.

 $f^*\omega$ and $\alpha\omega$ are cohomologous positive closed (1, 1) currents, so there is a continuous function u such that:

$$f^*\omega = \alpha\omega + dd^c u.$$

Then:

$$f^{2*}\omega = \alpha(f^*\omega) + dd^c(f^*u)$$

= $\alpha^2\omega + dd^c(\alpha u + u \circ f).$

Consequently,

$$f^{n*}\omega = lpha^n\omega + dd^c(lpha^{n-1}u + lpha^{n-2}u \circ f + \ldots + u \circ f^{n-1})$$
 and

$$\frac{1}{\alpha^n} f^{n*} \omega = \omega + dd^c \sum_{j=1}^{n-1} \alpha^{-j} u \circ f^{j-1} \to \omega + dd^c G := T \text{ as } n \to \infty.$$

T is the **Green's current of** f, G is continuous, and $f^*T = \alpha T$.

On the previous slide, we had:

$$\frac{1}{\alpha^n} f^{n*} \omega \to T \text{ as } n \to \infty,$$

where ω was the Kahler-Study form.

When can we can replace ω with a current and have the same limit?

In particular, we consider positive closed (1,1) currents of mass 1.

In their proof, FJ use that such a current may affect the size of forward iterates of a ball in $\mathbb{P}^2_{\mathbb{C}}$ to determine sufficient conditions on a current to attain the above limit.

Part 1 of Proof of FJ Theorem

Suppose that S is a positive closed (1, 1)-current for which limit \star fails. S can be written as:

$$S = \omega + dd^c u,$$

where $u \leq 0$ is the sum of a psh function and a smooth function. Then, $\forall n \geq 0$,

$$\alpha^{-n}f^{n*}S = \alpha^{-n}f^{n*}\omega + \alpha^{-n}dd^{c}(u \circ f^{n}).$$

By assumption, $\alpha^{-n}f^{n*}S \not\rightarrow T$ and we know that $\alpha^{-n}f^{n*}\omega \rightarrow T$. So $\alpha^{-n}dd^{c}(u \circ f^{n}) \not\rightarrow 0$. Equivalently, $\alpha^{-n}u \circ f^{n} \not\rightarrow 0$ in L^{1}_{loc} since: $\int_{\mathbb{P}^{2}} \alpha^{-n}dd^{c}(u \circ f^{n}) \wedge \phi = \int_{\mathbb{P}^{2}} (\alpha^{-n}u \circ f^{n}) \wedge dd^{c}\phi.$

We want to determine for which S, $v_n := \alpha^{-n} u \circ f^n \not\to 0$.

Part 1 of Proof of FJ Theorem

Recall: We want to determine for which S, $v_n := \alpha^{-n} u \circ f^n \not\to 0$.

 $\{v_n\}$ is a sequence of subharmonic functions bounded above by 0.

Hartog's Lemma (In Dynamics of Rational Maps on \mathbb{P}^{k} by Sibony) Let $\{v_{j}\}$ be a sequence of subharmonic functions on a domain Ω . Suppose $\{v_{j}\}$ is bounded above on every compact subset K of Ω . If $v_{j} \not\rightarrow -\infty$ on K, then there is a subsequence $\{v_{j_{k}}\}$ converging on L^{1}_{loc} to a subharmonic function v. In addition, $\limsup_{j\to\infty} \sup_{K} v_{j} \leq \sup_{K} v$, for all compact K.

If $v_n \not\to -\infty$ on a ball $B \subset \mathbb{P}^2_{\mathbb{C}}$, then there is a subsequence $\{v_{n_j}\}$ that converges to subharmonic v < c, for constant c < 0. Then:

$$B \subset \{v_{n_j} = \alpha^{-n_j} u \circ f^{n_j} < c\} \Rightarrow f^{n_j}(B) \subset \{u < \alpha^{n_j} c < 0\}.$$

The rest of [FJ] is spent showing that if S satisfies the properties relating to \mathcal{E} from the theorem, then we cannot have:

$$f^{n_j}(B) \subset \{u < \alpha^{n_j} c < 0\}.$$

That is done in [FJ] by estimating the volume of $f^{n_j}(B)$ from below (using dynamics) and the volume of $\{u < c\alpha^{n_j}\}$ from above (using pluripotential theory).

Brolin's Theorem, originally for monic polynomials in \mathbb{C} , has extensions to rational functions in $\mathbb{P}^1_{\mathbb{C}}$ and to holomorphic functions in $\mathbb{P}^2_{\mathbb{C}}$. We focused on the latter extension.