An Extension of Brolin's Theorem \& Relevant Tools

Sara Lapan
Northwestern University + UC Riverside

August 15, 2016

Brolin's Theorem

Theorem (Brolin, 1965)

If $f(z)=z^{\alpha}+\ldots$ is a polynomial of degree $\alpha \geq 2$, then there is an exceptional set \mathcal{E} with $\# \mathcal{E} \leq 1$ such that if $a \in \mathbb{C} \backslash \mathcal{E}$, then

$$
\frac{1}{\alpha^{n}} \sum_{f^{n}(z)=a} \delta_{z} \rightarrow \mu \text { as } n \rightarrow \infty
$$

where μ is harmonic measure on the filled Julia set of f.

- The limit is independent of a.
- $\mathcal{E}=\emptyset$ or, if f is affinely conjugate to $z \mapsto z^{\alpha}, \mathcal{E}=\{0\}$.
- This result is specific for polynomials in \mathbb{C}.
Q. Can Brolin's Theorem extend to other types of maps or spaces?

Yes, with additional assumptions, to:

- rational maps in $\mathbb{P}_{\mathbb{C}}^{1}$ by Lyubich \& Freire-Lopez-Mañé [1983]
- holomorphic maps in $\mathbb{P}_{\mathbb{C}}^{2}$ by Favre-Jonsson [2001]

Extending Brolin's Theorem

Theorem (Brolin, 1965)

If $f(z)=z^{\alpha}+\ldots$ is a polynomial of degree $\alpha \geq 2$, then there is an exceptional set \mathcal{E} with $\# \mathcal{E} \leq 1$ such that if $a \in \mathbb{C} \backslash \mathcal{E}$, then

$$
\frac{1}{\alpha^{n}} \sum_{f^{n}(z)=a} \delta_{z} \rightarrow \mu \text { as } n \rightarrow \infty,
$$

where μ is harmonic measure on the filled Julia set of f.

Theorem (Favre-Jonsson, 2001)

Let $f=[P: Q: R]: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$, where P, Q, R are homogeneous polynomials of degree $\alpha \geq 2$ and let \mathcal{E} be a special set. If S is a positive closed $(1,1)$ current on \mathbb{P}^{2} with mass 1 that behaves nicely on \mathcal{E}, then

$$
\frac{1}{\alpha^{n}} f^{n *} S \rightarrow T \text { as } n \rightarrow \infty
$$

where T is the Green current of f.

Overview

(1) What is a current?

Focus on positive closed $(1,1)$-currents on $\mathbb{P}_{\mathbb{C}}^{2}$.
(2) Precise statement of extension of Brolin's Theorem to $\mathbb{P}_{\mathbb{C}}^{2}$

Focus on Theorem A of "Brolin's Theorem for Curves in Two Complex Dimensions" by Favre-Jonsson from 2001.
(3) Some Ingredients in the proof Including Hartog's Lemma.

What is a p-current?

Let M be a smooth (\mathbb{R}) manifold of dimension m.
Let $D^{p}(M)$ be the space of smooth p-forms with compact support on M.

Definition

S is a p-current on M if it is a (continuous) linear functional:

$$
S: D^{p}(M) \rightarrow \mathbb{R}
$$

Note: The action of S on $\nu \in D^{p}(M)$ is often denoted $\langle S, \nu\rangle$.
Let $D_{p}^{\prime}(M)$ be the space of p-currents on M.

What is a p-current?

Example 1. p-dimensional submanifolds

Let M be a smooth manifold of dimension m.
Let $Z \subset M$ be a closed oriented submanifold of $\operatorname{dim} p$ and class C^{1}.
Geometrically, a p-current can represent integration over Z.
The current of integration over $Z,[Z]$, is a p-current defined by:

$$
\langle[Z], u\rangle=\int_{Z} u, \text { for } u \in D^{p}(M) .
$$

A p-current $S \in D_{p}^{\prime}(M)$ can be expressed as a $(m-p)$-form:

$$
S=\sum_{|| |=m-p} S_{l} d x^{\prime}, \text { where }
$$

$I=\left(i_{1}, \ldots, i_{m-p}\right), d x^{\prime}=d x_{i_{1}} \wedge \ldots \wedge d x_{i_{m-p}}$, and $i_{1}<\ldots<i_{m-p}$.

What is a p-current?

Example 2. $(m-p)$-form
A form $\alpha \in D^{m-p}(M)$ with coefficients in $L_{l o c}^{1}$ defines a p-current:

$$
\langle\alpha, \phi\rangle:=\int_{M} \alpha \wedge \phi \text { for any } \phi \in D^{p}(M)
$$

since $\alpha \wedge \phi \in D^{m}(M)$ is a volume form.

Consequently, a p-current S acts on p-forms and can act as an ($m-p$)-form.

We say that S has dimension p and degree $m-p$.

Extending from \mathbb{R} to \mathbb{C}

Each complex variable, z_{j}, has 2 corresponding real variables and so we have 2 corresponding differentials. In particular, $d z_{j}$ and $d \bar{z}_{j}$.

Note that $d z_{j}$ is a $(1,0)$-form and $d \bar{z}_{j}$ is a $(0,1)$-form.
More generally, $\alpha=\sum \alpha_{I J} d z_{I} \wedge d \bar{z}_{J}$ is a (p, q)-form and we say that $\alpha \in D^{p, q}$.

Notation: $d=\partial+\bar{\partial}$ and $d^{c}=\frac{i}{2 \pi}(\bar{\partial}-\partial)$, where

$$
\begin{aligned}
& \partial \alpha=\sum_{k,|||=p,|J|=q} \frac{\partial \alpha_{I J}}{d z_{k}} d z_{k} \wedge d z_{I} \wedge d \bar{z}_{j} \text { and } \\
& \bar{\partial} \alpha=\sum_{k,|||=p,|J|=q} \frac{\partial \alpha_{I J}}{d \bar{z}_{k}} d \bar{z}_{k} \wedge d z_{I} \wedge d \bar{z}_{j} .
\end{aligned}
$$

It follows that $d d^{c}=\frac{i}{\pi} \partial \bar{\partial}$.

What is a $(1,1)$-current?

For simplicity, we now focus on $M=\mathbb{P}_{\mathbb{C}}^{2}$.
Let z_{1} and z_{2} be local coordinates on $\mathbb{P}_{\mathbb{C}}^{2}$.
Let $D^{1,1}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ be the space of smooth compactly supported $(1,1)$-forms. Any $\nu \in D^{1,1}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ can be expressed as:

$$
\nu=\sum_{1 \leq j, k \leq 2} a_{j k} d z_{j} \wedge d \bar{z}_{k},
$$

Definition (For $\mathbb{P}_{\mathbb{C}}^{2}$)

A (1,1)-current S is a linear functional on $D^{1,1}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ and can be represented as a (1,1)-form with distributional coefficients.

Closed positive $(1,1)$-currents and why they are special.

Definition

Let S be a $(1,1)$-current and express it as $S=i \sum S_{j k} d z_{j} \wedge d \bar{z}_{k}$. S is positive if the distribution $\sum S_{j k} \zeta_{j} \bar{\zeta}_{k} \geq 0$ for all $\zeta \in \mathbb{C}^{2}$.

Definition

A $(1,1)$-current S is closed if $d S=0($ Recall $d S=(\partial+\bar{\partial}) S)$.
Why are closed positive (1,1)-currents special?
Proposition (A.4.1, Sibony - some of the proposition)
(1) Every positive $(1,1)$-current is representable by integration. (The distributional coefficients are measurable)
(2) If S is a closed positive $(1,1)$-current, then $\forall z_{0} \in M, \exists$ an open neighborhood $U \subset M$ of z_{0} and a plurisubharmonic function u on U such that $S=d d^{c} u$ in U.
(Note: u is called a potential of S and $d d^{c}=\frac{i}{\pi} \partial \bar{\partial}$)

Currents

Let S be a positive closed (1,1)-current on $\mathbb{P}_{\mathbb{C}}^{2}$ and ω the standard Kahler form on $\mathbb{P}_{\mathbb{C}}^{2}$ corresponding to the Fubini-Study metric.

Definition

S has unit mass if $1=\|S\|=\int_{\mathbb{P}_{\mathbb{C}}^{2}} S \wedge \omega$.
Let $f: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ be holomorphism of algebraic degree $\alpha \geq 2$.
$\Rightarrow f=[P: Q: R], P, Q, R$ homogenenous degree α polynomials.

We are now prepared to revisit FJ's extension of Brolin's Theorem using more precise language.

Precise statement of FJ Theorem

Theorem (Favre-Jonsson, 2001)

Let $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be holomorphism of algebraic degree $\alpha \geq 2$.
Then \exists a set $\mathcal{E}=\mathcal{E}_{1} \cup \mathcal{E}_{2}$, where:
\mathcal{E}_{1} is a totally invariant, algebraic set consisting of $\leq 3 \mathbb{C}$-lines \&
\mathcal{E}_{2} is a totally invariant (i.e., $f^{-1}\left(\mathcal{E}_{2}\right)=\mathcal{E}_{2}$), finite set,
and \mathcal{E} has the following property:
If S is a positive closed $(1,1)$ current on \mathbb{P}^{2} of mass 1 such that
(1) S does not change any irreducible component of \mathcal{E}_{1};
(2) S has a bounded local potential at each point of \mathcal{E}_{2};
then we have the convergence

$$
\star \quad \frac{1}{\alpha^{n}} f^{n *} S \rightarrow T \text { as } n \rightarrow \infty
$$

where T is the Green current of f.

Part 1 of Proof of FJ Theorem

Let ω be the Fubini-Study Kahler form on $\mathbb{P}_{\mathbb{C}}^{2}$.
$f^{*} \omega$ and $\alpha \omega$ are cohomologous positive closed $(1,1)$ currents,so there is a continuous function u such that:

$$
f^{*} \omega=\alpha \omega+d d^{c} u .
$$

Then:

$$
\begin{aligned}
f^{2 *} \omega & =\alpha\left(f^{*} \omega\right)+d d^{c}\left(f^{*} u\right) \\
& =\alpha^{2} \omega+d d^{c}(\alpha u+u \circ f)
\end{aligned}
$$

Consequently,

$$
\begin{gathered}
f^{n *} \omega=\alpha^{n} \omega+d d^{c}\left(\alpha^{n-1} u+\alpha^{n-2} u \circ f+\ldots+u \circ f^{n-1}\right) \text { and } \\
\frac{1}{\alpha^{n}}{ }^{n *} \omega=\omega+d d^{c} \sum_{j=1}^{n-1} \alpha^{-j} u \circ f^{j-1} \rightarrow \omega+d d^{c} G:=T \text { as } n \rightarrow \infty .
\end{gathered}
$$

T is the Green's current of f, G is continuous, and $f^{*} T=\alpha T$.

On the previous slide, we had:

$$
\frac{1}{\alpha^{n}} f^{n *} \omega \rightarrow T \text { as } n \rightarrow \infty
$$

where ω was the Kahler-Study form.

When can we can replace ω with a current and have the same limit?
In particular, we consider positive closed $(1,1)$ currents of mass 1.
In their proof, FJ use that such a current may affect the size of forward iterates of a ball in $\mathbb{P}_{\mathbb{C}}^{2}$ to determine sufficient conditions on a current to attain the above limit.

Part 1 of Proof of FJ Theorem

Suppose that S is a positive closed $(1,1)$-current for which limit \star fails. S can be written as:

$$
S=\omega+d d^{c} u
$$

where $u \leq 0$ is the sum of a psh function and a smooth function.
Then, $\forall n \geq 0$,

$$
\alpha^{-n} f^{n *} S=\alpha^{-n} f^{n *} \omega+\alpha^{-n} d d^{c}\left(u \circ f^{n}\right)
$$

By assumption, $\alpha^{-n} f^{n *} S \nrightarrow T$ and we know that $\alpha^{-n} f^{n *} \omega \rightarrow T$.
So $\alpha^{-n} d d^{c}\left(u \circ f^{n}\right) \nrightarrow 0$. Equivalently, $\alpha^{-n} u \circ f^{n} \nrightarrow 0$ in $L_{\text {loc }}^{1}$ since:

$$
\int_{\mathbb{P}_{\mathbb{C}}^{2}} \alpha^{-n} d d^{c}\left(u \circ f^{n}\right) \wedge \phi=\int_{\mathbb{P}_{\mathbb{C}}^{2}}\left(\alpha^{-n} u \circ f^{n}\right) \wedge d d^{c} \phi
$$

We want to determine for which $S, v_{n}:=\alpha^{-n} u \circ f^{n} \nrightarrow 0$.

Part 1 of Proof of FJ Theorem

Recall: We want to determine for which $S, v_{n}:=\alpha^{-n} u \circ f^{n} \nrightarrow 0$.
$\left\{v_{n}\right\}$ is a sequence of subharmonic functions bounded above by 0 .

Hartog's Lemma (In Dynamics of Rational Maps on \mathbb{P}^{k} by Sibony)

Let $\left\{v_{j}\right\}$ be a sequence of subharmonic functions on a domain Ω. Suppose $\left\{v_{j}\right\}$ is bounded above on every compact subset K of Ω.

If $v_{j} \nrightarrow-\infty$ on K, then there is a subsequence $\left\{v_{j_{k}}\right\}$ converging on $L_{\text {loc }}^{1}$ to a subharmonic function v. In addition,

$$
\limsup _{j \rightarrow \infty} \sup _{K} v_{j} \leq \sup _{K} v, \text { for all compact } K
$$

If $v_{n} \nrightarrow-\infty$ on a ball $B \subset \mathbb{P}_{\mathbb{C}}^{2}$, then there is a subsequence $\left\{v_{n_{j}}\right\}$ that converges to subharmonic $v<c$, for constant $c<0$. Then:

$$
B \subset\left\{v_{n_{j}}=\alpha^{-n_{j}} u \circ f^{n_{j}}<c\right\} \Rightarrow f^{n_{j}}(B) \subset\left\{u<\alpha^{n_{j}} c<0\right\} .
$$

The rest of [FJ] is spent showing that if S satisfies the properties relating to \mathcal{E} from the theorem, then we cannot have:

$$
f^{n_{j}}(B) \subset\left\{u<\alpha^{n_{j}} c<0\right\} .
$$

That is done in [FJ] by estimating the volume of $f^{n_{j}}(B)$ from below (using dynamics) and the volume of $\left\{u<c \alpha^{n_{j}}\right\}$ from above (using pluripotential theory).

Conclusion

Brolin's Theorem, originally for monic polynomials in \mathbb{C}, has extensions to rational functions in $\mathbb{P}_{\mathbb{C}}^{1}$ and to holomorphic functions in $\mathbb{P}_{\mathbb{C}}^{2}$. We focused on the latter extension.

