Application of the Compactness Theorem for Subharmonic Functions to Brolin's Theorem

Joanna Furno

Indiana University-Purdue University Indianapolis

August 15, 2016

Joanna Furno Compactness and Brolin's Theorem

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Subharmonic Functions

Let Ω be a domain in \mathbb{C} .

Definition

 $u:\Omega \to [-\infty,\infty)$ is subharmonic (SH) if:

u is upper semicontinuous:

$$\forall z_0 \in \Omega, \limsup_{z \to z_0} u(z) \leq u(z_0)$$

u satisfies the submean value property:

$$orall z \in \Omega, \, orall r > 0 ext{ such that } \mathbb{D}(z, r) \subset \Omega$$

 $u(z) \leq rac{1}{2\pi} \int_0^{2\pi} u(z + re^{i heta}) d heta$

3
$$u \not\equiv -\infty$$

Example

 $u(z) = \log |z|$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

ъ

Let u(z) = u(x + iy) have continuous second-order partial derivatives, so $\Delta u = \partial^2 u / \partial x^2 + \partial^2 u / \partial y^2$ is defined.

Definition

u(z) = u(x + iy) is *harmonic* if $\Delta u = 0$ on Ω .

Theorem

A smooth real-valued function u(z) is subharmonic on Ω if and only if $\Delta u \ge 0$ on Ω .

イロト イポト イヨト イヨト

Properties for making new subharmonic functions:

• The max of two SH functions is SH. e.g. $\log_+ |z| := \max \{0, \log |z|\}$ is SH

If u is SH and $c \ge 0$, then cu is subharmonic.

e.g. For fixed
$$n \in \mathbb{N}, \ rac{1}{2^n}\log_+|z|$$
 is SH.

If u is SH and p is holomorphic, then u ∘ p is SH.
e.g. Let $p(z) = z^2 + c$, $c \in \mathbb{C} \setminus \{0\}$. For fixed $n \in \mathbb{N}$, $\log_+ |z|/2^n$ is SH and $p^n(z)$ is holomorphic, so

$$G_n(z) = \frac{1}{2^n} \log_+ |p^n(z)| \text{ is SH.}$$

A = A = A = A

Green Function

$$G_n(z)=rac{1}{2^n}\log_+|p^n(z)| ext{ is SH}.$$

Properties for making new subharmonic functions:

• The uniform limit of SH functions is SH.

ヘロン 人間 とくほ とくほ とう

3

$$G_n(z)=rac{1}{2^n}\log_+|p^n(z)| ext{ is SH}.$$

Properties for making new subharmonic functions:

The uniform limit of SH functions is SH.

For the following, we restrict attention to $p(z) = z^2 + c$.

Proposition $\lim_{n \to \infty} G_n(z)$ converges uniformly on \mathbb{C} .Green Function $G(z) := \lim_{n \to \infty} G_n(z)$ is SH.

ヘロン 人間 とくほ とくほ とう

ъ

Escape Rates and the Filled Julia Set

Definition (Filled Julia Set)

 $\mathcal{K}_{p} = \{z \in \mathbb{C} : p^{n}(z) \text{ remains bounded}\}$

Figure: Escape rate algorithm for c = -.122 + .745i.

Figure: Escape rate algorithm for c = 0.365 - 0.37i.

ヘロト ヘアト ヘビト ヘビト

Definition

The Laplacian of a SH function *u* is a distribution defined by

$$\langle \Delta u, \phi \rangle = \int \Delta \phi \cdot u \, dLeb, \quad \text{for all } \phi \in C_0^\infty(\Omega)$$

Recall:

•
$$\Delta \log |z| = 2\pi \delta_0$$
, where δ_0 is the Dirac mass at 0.
• For $p(z) = \prod_{i=1}^n (z - z_i)$, we have $\Delta \log |p(z)| = 2\pi \sum_{i=1}^n \delta_{z_i}$.

イロト イポト イヨト イヨト

■ のへの

Laplacian of the Green Function

Green Function

$$G(z) := \lim_{n \to \infty} \frac{1}{2^n} \log_+ |p^n(z)|$$

Facts:

- ΔG is zero everywhere except on the Julia set
- $\mu := \frac{1}{2\pi} \Delta G$ is a dynamically important measure that is supported on the Julia set (the unique invariant measure of maximal entropy)

ヘロン 人間 とくほ とくほ とう

Green Function

$$G(z) := \lim_{n \to \infty} \frac{1}{2^n} \log_+ |p^n(z)|$$

Brolin's Theorem

For all $w \in \mathbb{C}$ except at most two exceptional points,

$$\frac{1}{2^n}(p^n)^*\delta_w o \frac{1}{2\pi}\Delta G.$$

Note:
$$\frac{1}{2^n}(p^n)^*\delta_w = \frac{1}{2\pi}\Delta\left(\frac{1}{2^n}\log|p^n(z)-w|\right)$$

イロン 不得 とくほ とくほ とうほ

Figure: Escape rate algorithm.

Figure: Sixth preimage of 0.

э

æ

Figure: Escape rate algorithm.

Figure: Eighth preimage of 0.

문▶ 문

Figure: Escape rate algorithm.

Figure: Tenth preimage of 0.

э

æ

Figure: Tenth preimage of 0.

イロト イポト イヨト イヨト

æ

Figure: Tenth preimage of 0.933 + 0.637i.

Figure: Escape rate algorithm.

Figure: Random preimages of 0.933 + 0.637i.

< 17 ▶

→ < Ξ →</p>

э

Notation:
$$z_n := p^n(z)$$
 and $u_n(z) := \frac{1}{2^n} \log |z_n - w|$

Green Function

$$G(z):=\lim_{n\to\infty}\frac{1}{2^n}\log_+|z_n|$$

Goal:

Show that u_n converges to G in L^1_{loc} .

Joanna Furno Compactness and Brolin's Theorem

イロト イポト イヨト イヨト

ъ

Notation:
$$z_n := p^n(z)$$
 and $u_n(z) := \frac{1}{2^n} \log |z_n - w|$

Compactness Theorem

If v_i is a sequence

- of subharmonic functions on a domain $\Omega \subset \mathbb{C}$
- that has a uniform upper bound on any compact set
- that does not converge to $-\infty$ uniformly on every compact set in Ω ,

then there is a subsequence v_{j_k} which converges in $L^1_{loc}(\Omega)$ to a subharmonic function.

くゆ くら くらと

Notation:
$$z_n := p^n(z)$$
 and $u_n(z) := \frac{1}{2^n} \log |z_n - w|$

Step 1: Restrict to a convergent subsequence.

Outside K_p , $u_n \rightarrow G$ locally uniformly.

- In a disk \mathbb{D} containing K_p , u_n is a sequence
 - of subharmonic functions on $\mathbb D$
 - $\bullet\,$ that has a uniform upper bound on any compact set in $\mathbb D\,$
 - that does not converge to -∞ uniformly on every compact set in D.

Thus, there is a subsequence u_{n_k} which converges in $L^1_{loc}(\mathbb{D})$ to a subharmonic function v.

く 同 と く ヨ と く ヨ と

Recap:

Goal: Show that u_n converges to G in L^1_{loc} .

Outside K_p , $u_n \rightarrow G$ locally uniformly.

In \mathbb{D} containing K_p , (after re-indexing) $u_n \to v$ in L^1_{loc} .

Contradiction hypothesis: Suppose $v \neq G$ (on K_p).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Hartogs' Lemma

- If v_j is a sequence
 - of subharmonic functions on a domain $\Omega \subset \mathbb{C}$
 - that has a uniform upper bound on any compact set
 - that converges in $\mathcal{D}'(\Omega)$ to a subharmonic function v,

then $v_j \rightarrow v$ in $L^1_{loc}(\Omega)$ and

 $\limsup_{j\to\infty}v_j(z)\leq v(z).$

Joanna Furno Compactness and Brolin's Theorem

ヘロン 人間 とくほ とくほ とう

$$G(z) := \lim_{n \to \infty} \frac{1}{2^n} \log_+ |z_n|$$
 and $u_n(z) := \frac{1}{2^n} \log |z_n - w|$

Step 2: Upper bound.

Recall: $G \equiv 0$ and $v \not\equiv G$ on K_p . Hartogs' Lemma implies $\limsup_{n \to \infty} u_n(z) \le v(z)$. u_n, v , and G are upper semicontinuous. There is $\delta > 0$ such that $W := \{v < -2\delta\}$ is nonempty open. There is a precompact, open $W_0 \subset W$ such that $\frac{1}{2^n} \log |p^n(z_0) - w| < -\delta$ for all $z_0 \in W_0$. Solving, $|p^n(z_0) - w| < e^{-\delta 2^n}$ implies $p^n(W_0) \subset \mathbb{D}(w, e^{-\delta 2^n})$

イロン 不良 とくほう 不良 とうほ

Step 3: Lower bound.

1 - 1

Fix
$$R < \frac{|C|}{2}$$
. Let $0 < r < R$ and consider $p(\mathbb{D}(z^*, r))$.

- If $|z^*| \ge R$, then $\mathbb{D}(p(z^*), r \cdot R) \subset p(\mathbb{D}(z^*, r))$.
- ② If $r/3 ≤ |z^*| ≤ R$, then $\mathbb{D}(p(z^*), r^2/9) ⊂ p(\mathbb{D}(z^*, r/3))$.
- **③** If $|z^*| < r/3$, then $\mathbb{D}(c, r^2/9) \subset p(\mathbb{D}(z^*, r))$.

Since r < R < |c|/2, a disk can only get mapped near the critical point every other iterate.

Hence, we have a constant A > 0 and a sequence z_n^* such that

$$\mathbb{D}(\boldsymbol{z}_n^*, \boldsymbol{A} \cdot \boldsymbol{r}^{\sqrt{2}^n}) \subset \boldsymbol{p}^n(\boldsymbol{W}_0).$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Combining the bounds:

$$\mathbb{D}(\boldsymbol{z}_n^*, \boldsymbol{A} \cdot \boldsymbol{r}^{\sqrt{2}^n}) \subset \boldsymbol{p}^n(\boldsymbol{W}_0) \subset \mathbb{D}(\boldsymbol{w}, \boldsymbol{e}^{-\delta 2^n})$$

For *n* large enough, $e^{-\delta 2^n} < Ar^{\sqrt{2}^n}$, a contradiction.

Thus, $u_n \rightarrow v \equiv G$ in L^1_{loc} , so the Laplacians also converge.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q ()

More generally:

Lyubich, Freire-Lopez-Mañe Theorem

Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be rational with degree $d \ge 2$. There exists a set \mathcal{E} (the exceptional set) containing at most two points, such that if $z_0 \notin \mathcal{E}$, then

$$\frac{1}{d^n}(f^n)^*\delta_{z_0}\to\mu,$$

where μ is the measure of maximal entropy.