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Subharmonic Functions

Let Ω be a domain in C.

Definition
u : Ω→ [−∞,∞) is subharmonic (SH) if:

1 u is upper semicontinuous:
∀z0 ∈ Ω, lim sup

z→z0

u(z) ≤ u(z0)

2 u satisfies the submean value property:
∀z ∈ Ω, ∀r > 0 such that D(z, r) ⊂ Ω,

u(z) ≤ 1
2π

∫ 2π

0
u(z + reiθ)dθ

3 u 6≡ −∞

Example

u(z) = log |z|
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Subharmonic Functions

Let u(z) = u(x + iy) have continuous second-order partial
derivatives, so ∆u = ∂2u/∂x2 + ∂2u/∂y2 is defined.

Definition
u(z) = u(x + iy) is harmonic if ∆u = 0 on Ω.

Theorem
A smooth real-valued function u(z) is subharmonic on Ω if and
only if ∆u ≥ 0 on Ω.
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Green Function

Properties for making new subharmonic functions:

1 The max of two SH functions is SH.
e.g. log+ |z| := max {0, log |z|} is SH

2 If u is SH and c ≥ 0, then cu is subharmonic.

e.g. For fixed n ∈ N,
1
2n log+ |z| is SH.

3 If u is SH and p is holomorphic, then u ◦ p is SH.
e.g. Let p(z) = z2 + c, c ∈ C \ {0}. For fixed n ∈ N,

log+ |z|/2n is SH and pn(z) is holomorphic, so

Gn(z) =
1
2n log+ |pn(z)| is SH.
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Green Function

Gn(z) =
1
2n log+ |pn(z)| is SH.

Properties for making new subharmonic functions:

4 The uniform limit of SH functions is SH.

For the following, we restrict attention to p(z) = z2 + c.

Proposition

lim
n→∞

Gn(z) converges uniformly on C.

Green Function
G(z) := lim

n→∞
Gn(z) is SH.
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Green Function
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Escape Rates and the Filled Julia Set

Definition (Filled Julia Set)

Kp = {z ∈ C : pn(z) remains bounded}

Figure: Escape rate algorithm for
c = −.122 + .745i .

Figure: Escape rate algorithm for
c = 0.365− 0.37i .
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Distributions

Definition
The Laplacian of a SH function u is a distribution defined by

〈∆u, φ〉 =

∫
∆φ · u dLeb, for all φ ∈ C∞0 (Ω)

Recall:

∆ log |z| = 2πδ0, where δ0 is the Dirac mass at 0.

For p(z) =
n∏

i=1

(z − zi), we have ∆ log |p(z)| = 2π
n∑

i=1

δzi .
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Laplacian of the Green Function

Green Function

G(z) := lim
n→∞

1
2n log+ |pn(z)|

Facts:

∆G is zero everywhere except on the Julia set

µ :=
1

2π
∆G is a dynamically important measure that is

supported on the Julia set (the unique invariant measure of
maximal entropy)
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Brolin’s Theorem

Green Function

G(z) := lim
n→∞

1
2n log+ |pn(z)|

Brolin’s Theorem
For all w ∈ C except at most two exceptional points,

1
2n (pn)∗δw →

1
2π

∆G.

Note:
1
2n (pn)∗δw =

1
2π

∆

(
1
2n log |pn(z)− w |

)
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Brolin’s Theorem

Figure: Escape rate algorithm. Figure: Sixth preimage of 0.
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Brolin’s Theorem

Figure: Escape rate algorithm. Figure: Eighth preimage of 0.
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Brolin’s Theorem

Figure: Escape rate algorithm. Figure: Tenth preimage of 0.
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Brolin’s Theorem

Figure: Tenth preimage of 0. Figure: Tenth preimage of
0.933 + 0.637i .
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Brolin’s Theorem

Figure: Escape rate algorithm. Figure: Random preimages of
0.933 + 0.637i .
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Proof of Brolin’s Theorem for p(z) = z2 + c, c 6= 0

Notation: zn := pn(z) and un(z) :=
1
2n log |zn − w |

Green Function

G(z) := lim
n→∞

1
2n log+ |zn|

Goal:

Show that un converges to G in L1
loc.
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Proof of Brolin’s Theorem for p(z) = z2 + c, c 6= 0

Notation: zn := pn(z) and un(z) :=
1
2n log |zn − w |

Compactness Theorem
If vj is a sequence

of subharmonic functions on a domain Ω ⊂ C
that has a uniform upper bound on any compact set
that does not converge to −∞ uniformly on every compact
set in Ω,

then there is a subsequence vjk which converges in L1
loc(Ω) to a

subharmonic function.
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Proof of Brolin’s Theorem for p(z) = z2 + c, c 6= 0

Notation: zn := pn(z) and un(z) :=
1
2n log |zn − w |

Step 1: Restrict to a convergent subsequence.

Outside Kp, un → G locally uniformly.

In a disk D containing Kp, un is a sequence
of subharmonic functions on D
that has a uniform upper bound on any compact set in D
that does not converge to −∞ uniformly on every compact
set in D.

Thus, there is a subsequence unk which converges in L1
loc(D) to

a subharmonic function v .
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Proof of Brolin’s Theorem for p(z) = z2 + c, c 6= 0

Recap:

Goal: Show that un converges to G in L1
loc.

Outside Kp, un → G locally uniformly.

In D containing Kp, (after re-indexing) un → v in L1
loc.

Contradiction hypothesis: Suppose v 6= G (on Kp).
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Proof of Brolin’s Theorem for p(z) = z2 + c, c 6= 0

Hartogs’ Lemma

If vj is a sequence
of subharmonic functions on a domain Ω ⊂ C
that has a uniform upper bound on any compact set
that converges in D′(Ω) to a subharmonic function v ,

then vj → v in L1
loc(Ω) and

lim sup
j→∞

vj(z) ≤ v(z).
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Proof of Brolin’s Theorem for p(z) = z2 + c, c 6= 0

G(z) := lim
n→∞

1
2n log+ |zn| and un(z) :=

1
2n log |zn − w |

Step 2: Upper bound.
Recall: G ≡ 0 and v 6≡ G on Kp.

Hartogs’ Lemma implies lim supn→∞ un(z) ≤ v(z).
un, v , and G are upper semicontinuous.

There is δ > 0 such that W := {v < −2δ} is nonempty open.

There is a precompact, open W0 ⊂W such that
1
2n log |pn(z0)− w | < −δ for all z0 ∈W0.

Solving, |pn(z0)− w | < e−δ2n
implies pn(W0) ⊂ D(w ,e−δ2n

)
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Proof of Brolin’s Theorem for p(z) = z2 + c, c 6= 0

Step 3: Lower bound.

Fix R <
|c|
2

. Let 0 < r < R and consider p(D(z∗, r)).

1 If |z∗| ≥ R, then D(p(z∗), r · R) ⊂ p(D(z∗, r)).
2 If r/3 ≤ |z∗| ≤ R, then D(p(z∗), r2/9) ⊂ p(D(z∗, r/3)).
3 If |z∗| < r/3, then D(c, r2/9) ⊂ p(D(z∗, r)).

Since r < R < |c|/2, a disk can only get mapped near the
critical point every other iterate.

Hence, we have a constant A > 0 and a sequence z∗n such that

D(z∗n ,A · r
√

2
n

) ⊂ pn(W0).
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Proof of Brolin’s Theorem for p(z) = z2 + c, c 6= 0

Combining the bounds:

D(z∗n ,A · r
√

2
n

) ⊂ pn(W0) ⊂ D(w ,e−δ2n
)

For n large enough, e−δ2n
< Ar

√
2

n
, a contradiction.

Thus, un → v ≡ G in L1
loc, so the Laplacians also converge.
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Lyubich, Freire-Lopez-Mañe Theorem

More generally:

Lyubich, Freire-Lopez-Mañe Theorem

Let f : Ĉ→ Ĉ be rational with degree d ≥ 2. There exists a set
E (the exceptional set) containing at most two points, such that
if z0 /∈ E , then

1
dn (f n)∗δz0 → µ,

where µ is the measure of maximal entropy.

Joanna Furno Compactness and Brolin’s Theorem


