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Subharmonic Functions

Let Q2 be a domain in C.
u:Q — [—o0,00) is subharmonic (SH) if:
@ uis upper semicontinuous:

Vzy € Q, limsup u(z) < u(z)
Z—Zy

@ u satisfies the submean value property:
Vz e Q,Vr>0suchthatD(z,r) C Q,

1 2m .
< i0
u(z) < o /o u(z+ re")dé
Q u£ -

u(z) = log|z|
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Subharmonic Functions

Let u(z) = u(x + iy) have continuous second-order partial
derivatives, so Au = 0%u/0x? 4 92u/dy? is defined.

Definition

u(z) = u(x + iy) is harmonic if Au =0 on Q.

A smooth real-valued function u(z) is subharmonic on Q if and
only if Au > 0 on Q.
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Green Function

Properties for making new subharmonic functions:
@ The max of two SH functions is SH.
e.g. log, |z| := max {0, log |z|} is SH
@ If uis SH and ¢ > 0, then cu is subharmonic.

e.g. For fixed n e N, % log, |z| is SH.

© If uis SH and p is holomorphic, then u o pis SH.
e.g. Let p(z) = 22 + ¢, c € C\ {0}. For fixed n € N,
log, |z|/2" is SH and p"(z) is holomorphic, so

1 ,
Gn(2) = on log, [p"(2)| is SH.
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Green Function

1 .
Gn(2) = on log, [p"(2)| is SH.

Properties for making new subharmonic functions:
© The uniform limit of SH functions is SH.
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Green Function

1 .
Gn(2) = on log, [p"(2)| is SH.

Properties for making new subharmonic functions:
© The uniform limit of SH functions is SH.

For the following, we restrict attention to p(z) = 22 + c.

Proposition
nIi_}m Gn(z) converges uniformly on C.

Green Function
G(z) := lim Gp(z) is SH.
n—oo
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Escape Rates and the Filled Julia Set

Definition (Filled Julia Set)
K, = {z € C: p"(z) remains bounded}

Figure: Escape rate algorithm for Figure: Escape rate algorithm for
c=—.122 + .745i. ¢ =0.365 - 0.37i.
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Distributions

Definition
The Laplacian of a SH function v is a distribution defined by

(Au, ¢) = /A¢ -udLeb, forall ¢ e C°(Q2)

@ Alog|z| = 2mdg, Where ¢y is the Dirac mass at 0.
n

@ For p(z) = [ [(z — z), we have Alog |p(2)| = 27r25z,

i=1
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Laplacian of the Green Function

Green Function

G(2) := lim —Iog+ 1p"(2)]

@ AG s zero everywhere except on the Julia set

1 . . , .
[ ITRES ZAG is a dynamically important measure that is

supported on the Julia set (the unique invariant measure of
maximal entropy)

4
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Brolin’s Theorem

Green Function

G(2) := lim —Iog+ 1p"(2)]

Brolin’'s Theorem
For all w € C except at most two exceptional points,

1 1
2n(p ) ow — Z—AG

Togmys 1A (1 e
Note: ﬁ(p ) 0w = 27rA <2n log |p"(2) W|>
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Brolin’s Theorem

Figure: Escape rate algorithm. Figure: Sixth preimage of 0.
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Brolin’s Theorem

Figure: Escape rate algorithm. Figure: Eighth preimage of 0.
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Brolin’s Theorem

Figure: Escape rate algorithm. Figure: Tenth preimage of 0.
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Brolin’s Theorem

Figure: Tenth preimage of 0. Figure: Tenth preimage of

0.933 + 0.637i.
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Brolin’s Theorem

j T, :f’a?,'
o ﬁi:-ﬂ‘\_ k f;} N
R -4,
j I
S A
. # e "\%r
34y
" g
Figure: Escape rate algorithm. Figure: Random preimages of

0.933 + 0.637i.
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Proof of Brolin’s Theorem for p(z) = z2 + ¢, ¢ # 0

Notation: z,:=p'(z) and un(2):= —log|zn — w| J

2[7

Green Function

.1
G(z) := nI|_>moo o5 log, |zn|

1

Show that up converges to Gin L.
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Proof of Brolin’s Theorem for p(z) = z2 + ¢, ¢ # 0

Notation: z,:=p"(z) and un(2) := — log |z, — | \

Compactness Theorem

If v; is a sequence
@ of subharmonic functions on a domain Q ¢ C
@ that has a uniform upper bound on any compact set

@ that does not converge to —oo uniformly on every compact
setin Q,

then there is a subsequence v, which converges in L} (Q2) to a
subharmonic function.
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Proof of Brolin’s Theorem for p(z) = z2 + ¢, ¢ # 0

Notation: z,:=p"(z) and wun(z):=

:
o
(@]
é\‘
E

Step 1: Restrict to a convergent subsequence.

Outside Kp, un — G locally uniformly.

In a disk I containing Kp, u, is a sequence
@ of subharmonic functions on D
@ that has a uniform upper bound on any compact set in D

@ that does not converge to —oco uniformly on every compact
setin D.

Thus, there is a subsequence up, which converges in L} (D) to
a subharmonic function v.
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Proof of Brolin’s Theorem for p(z) = z2 + ¢, ¢ # 0

Recap:

Goal: Show that u, converges to Gin L.

Outside Kp, uy — G locally uniformly.

In D containing K, (after re-indexing) u, — vin L} .

Contradiction hypothesis: Suppose v # G (on Kp).
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Proof of Brolin’s Theorem for p(z) = z2 + ¢, ¢ # 0

Hartogs’ Lemma

If v; is a sequence
@ of subharmonic functions on a domain Q2 c C
@ that has a uniform upper bound on any compact set
@ that converges in D’'(Q2) to a subharmonic function v,

then v; — vin L} (Q) and

limsup vj(z) < v(2).
j—o0
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Proof of Brolin’s Theorem for p(z) = z2 + ¢, ¢ # 0

1 1
G(z) = nI|_>moo o0 log, |zp| and up(z):=

§I0g|z,,— w| ’

Step 2: Upper bound.

Recall: G=0and v # Gon K.
Hartogs’ Lemma implies lim sup,,_, ., un(2) < v(2).
up, v, and G are upper semicontinuous.

There is 6 > 0 such that W := {v < —24} is nonempty open.
There is a precompact, open Wy € W such that

1

on log |p"(29) — w| < —¢ for all zg € Wh.

Solving, |p"(z0) — w| < %" implies p"(W,) C D(w, e~%%")
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Proof of Brolin’s Theorem for p(z) = z2 + ¢, ¢ # 0

Step 3: Lower bound.

Fix R < ‘g' Let 0 < r < R and consider p(D(z*, r)).

Q If |z*] > R, then D(p(z*),r - R) C p(D(z*,r)).
@ 1fr/3 < |z*| < R, then D(p(z*),r?/9) C p(D(z*,r/3)).
Q If |z*| < r/3, then D(c, r?/9) C p(D(z*,r)).

Since r < R < |c|/2, a disk can only get mapped near the
critical point every other iterate.

Hence, we have a constant A > 0 and a sequence z;, such that

D(z;, A- rV2') C p(W).
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Proof of Brolin’s Theorem for p(z) = z2 + ¢, ¢ # 0

Combining the bounds:

D(z5, A r'2) C p"(Wo) C D(w, &2

n
For n large enough, e=%2" < Arv2'| a contradiction.

1

Thus, up - v=Gin Lloc,

so the Laplacians also converge.
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Lyubich, Freire-Lopez-Mane Theorem

More generally:

Lyubich, Freire-Lopez-Marie Theorem

Let f : € — C be rational with degree d > 2. There exists a set
£ (the exceptional set) containing at most two points, such that
if zg ¢ £, then

1 *
w(f”) 520 — M,

where p is the measure of maximal entropy.
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