Zeros, chaotic ratios and the computational complexity of approximating the independence polynomial

David de Boer
Joint work with: Pjotr Buys, Lorenzo Guerini, Han Peters and Guus Regts
arXiv:2104.11615

University of Amsterdam
Korteweg de Vries Institute for Mathematics

June 13, 2021

Very short summary

$$
\begin{aligned}
\overline{\left\{\lambda \in \mathbb{C}: Z_{G}(\lambda)=\right.} & \left.0 \text { for some } G \in \mathcal{G}_{\Delta}\right\} \\
& =
\end{aligned}
$$

$\left\{\lambda_{0} \in \mathbb{C} \mid\left\{\lambda \mapsto R_{G, v}(\lambda) \mid(G, v) \in \mathcal{G}_{\Delta}\right\}\right.$ is not locally normal at $\left.\lambda_{0}\right\}$

$$
=
$$

$$
\overline{\left\{\lambda \in \mathbb{C} \mid\left\{R_{G, v}(\lambda) \mid(G, v) \in \mathcal{G}_{\Delta}\right\} \text { is dense in } \mathbb{C}\right\}}
$$

$$
\subseteq
$$

$$
\overline{\left\{\lambda \in \mathbb{Q}[i]: \text { approximating } Z_{G}(\lambda) \text { is } \# P \text {-hard }\right\}}
$$

Independent sets

Definition

Let $G=(V, E)$ a finite graph. A subset $I \subseteq V$ is called an independent set if there are no edges between vertices in I. Denote $\mathcal{I}(G)$ the set of independents sets of G.

Independent sets

Definition

Let $G=(V, E)$ a finite graph. A subset $I \subseteq V$ is called an independent set if there are no edges between vertices in I. Denote $\mathcal{I}(G)$ the set of independents sets of G.

Figure: Independent set of size 2

Independence polynomial

Definition

Let $G=(V, E)$ a finite graph and $\lambda \in \mathbb{C}$. We define the independence polynomial as

$$
Z_{G}(\lambda):=\sum_{I \in \mathcal{I}(G)} \lambda^{|/|}
$$

Independence polynomial

Definition

Let $G=(V, E)$ a finite graph and $\lambda \in \mathbb{C}$. We define the independence polynomial as

$$
Z_{G}(\lambda):=\sum_{I \in \mathcal{I}(G)} \lambda^{|/|} .
$$

Independence polynomial

Definition

Let $G=(V, E)$ a finite graph and $\lambda \in \mathbb{C}$. We define the independence polynomial as

$$
Z_{G}(\lambda):=\sum_{I \in \mathcal{I}(G)} \lambda^{|/|}
$$

Figure: Independence polynomial $1+4 \lambda+2 \lambda^{2}$.

In and out

Figure: Independence polynomial $1+4 \lambda+2 \lambda^{2}$.

Example

We define $Z_{G, v}^{i n}(\lambda)=$

In and out

Figure: Independence polynomial $1+4 \lambda+2 \lambda^{2}$.

Example

We define $Z_{G, v}^{\text {in }}(\lambda)=\lambda+\lambda^{2}$ and $Z_{G, v}^{\text {out }}(\lambda)=$

In and out

Figure: Independence polynomial $1+4 \lambda+2 \lambda^{2}$.

Example

We define $Z_{G, v}^{\text {in }}(\lambda)=\lambda+\lambda^{2}$ and $Z_{G, v}^{\text {out }}(\lambda)=1+3 \lambda+\lambda^{2}$.

In and out

Figure: Independence polynomial $1+4 \lambda+2 \lambda^{2}$.

Example

We define $Z_{G, v}^{i n}(\lambda)=\lambda+\lambda^{2}$ and $Z_{G, v}^{\text {out }}(\lambda)=1+3 \lambda+\lambda^{2}$.

Remark

We have $Z_{G}(\lambda)=Z_{G, v}^{\text {in }}(\lambda)+Z_{G, v}^{\text {out }}(\lambda)$.

Ratio

Definition

Let $G=(V, E)$ a graph, and $v \in V$ a vertex. We define the rational function

$$
R_{G, v}(\lambda)=\frac{Z_{G, v}^{\text {in }}(\lambda)}{Z_{G, v}^{\text {out }}(\lambda)}
$$

Ratio

Definition

Let $G=(V, E)$ a graph, and $v \in V$ a vertex. We define the rational function

$$
R_{G, v}(\lambda)=\frac{Z_{G, v}^{\text {in }}(\lambda)}{Z_{G, v}^{\text {out }}(\lambda)}
$$

Remark

Note that if $R_{G, v}(\lambda)=-1$, then we have $Z_{G, v}^{\text {in }}(\lambda)=-Z_{G, v}^{\text {out }}(\lambda)$ and thus $0=Z_{G, v}^{\text {in }}(\lambda)+Z_{G, v}^{\text {out }}(\lambda)=Z_{G}(\lambda)$.

Ratio of a point and an edge

$$
R_{G}(\circ)=\frac{\bullet}{\bullet}=\frac{\lambda}{1}
$$

Ratio of a point and an edge

$$
\begin{gathered}
R_{G}(\circ)=\frac{\bullet}{\bullet}=\frac{\lambda}{1} \\
R_{G}(\emptyset)=\frac{\emptyset}{\varrho}=\frac{\lambda \cdot \bullet}{\bullet+\bullet}=\frac{\lambda \cdot 1}{1+\lambda}
\end{gathered}
$$

Ratio of a point and an edge

$$
\begin{gathered}
R_{G}(\circ)=\frac{\bullet}{\bullet}=\frac{\lambda}{1} \\
R_{G}(\emptyset)=\frac{\emptyset}{\varrho}=\frac{\lambda \cdot \bullet}{\bullet+\bullet}=\frac{\lambda \cdot 1}{1+\lambda}
\end{gathered}
$$

Remark

If we define $f_{\lambda}(z)=\frac{\lambda}{1+z}$, we see the ratio of an edge is f_{λ} applied to the ratio of a point.

Trees instead of graphs

Trees instead of graphs

The following result due to Bencs [Ben18], building on Weitz [Wei06].

Theorem

Let $(G, v) \in \mathcal{G}_{\Delta}$ be a rooted connected graph. Then there is a rooted tree $(T, u) \in \mathcal{G}_{\Delta}$ with $\operatorname{deg}_{T}(u)=\operatorname{deg}_{G}(v)$ such that (i) Z_{G} divides Z_{T},
(ii) $R_{G, v}=R_{T, u}$.

Zeros, chaotic ratios and approximation

Zeros and approximation

Notation

We denote

$$
\mathcal{Z}_{\Delta}=\left\{\lambda \in \mathbb{C}: Z_{G}(\lambda)=0 \text { for some } G \in \mathcal{G}_{\Delta}\right\} .
$$

We call $\overline{\mathcal{Z}_{\Delta}}$ the zero-locus.

Zeros and approximation

Notation

We denote

$$
\mathcal{Z}_{\Delta}=\left\{\lambda \in \mathbb{C}: Z_{G}(\lambda)=0 \text { for some } G \in \mathcal{G}_{\Delta}\right\}
$$

We call $\overline{\mathcal{Z}_{\Delta}}$ the zero-locus.

Remark

Suppose U is a simply connected open set containing 0 such that $\mathcal{Z}_{\Delta} \cap U=\emptyset$. Then for each $\lambda \in U$ there exist a polynomial time algorithm to approximate $Z_{G}(\lambda)$ for each $G \in \mathcal{G}_{\Delta}$ by Patel and Regts [PR17].

Normal Family

Let \mathcal{F} a family of rational maps $f: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$.

Definition

For an open $U \subseteq \hat{\mathbb{C}}$ the family \mathcal{F} is normal on U if each sequence $\left\{f_{n}\right\}_{n \geq 0} \subseteq \mathcal{F}$ has a subsequence that converges to a holomorphic $g: U \rightarrow \widehat{\mathbb{C}}$, uniformly on compact $K \subseteq U$.

Normal Family

Let \mathcal{F} a family of rational maps $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$.

Definition

For an open $U \subseteq \widehat{\mathbb{C}}$ the family \mathcal{F} is normal on U if each sequence $\left\{f_{n}\right\}_{n \geq 0} \subseteq \mathcal{F}$ has a subsequence that converges to a holomorphic $g: U \rightarrow \widehat{\mathbb{C}}$, uniformly on compact $K \subseteq U$.

Definition

We say a parameter λ_{0} is active for \mathcal{F} if for any open neighborhood of λ_{0} the family \mathcal{F} is not a normal family. The set of all active parameters is called the activity-locus of \mathcal{F}.

Example Normality

Recall the map $f_{\lambda}(z)=\frac{\lambda}{1+z}$. We will determine when the family $\left\{\lambda \mapsto f_{\lambda}^{n}(0)\right\}$ is normal.

Example Normality

Recall the map $f_{\lambda}(z)=\frac{\lambda}{1+z}$. We will determine when the family $\left\{\lambda \mapsto f_{\lambda}^{n}(0)\right\}$ is normal.

Chaotic behaviour of ratios

Definition

We define the activity-locus \mathcal{A}_{Δ} to be the activity-locus of the family

$$
\left\{\lambda \mapsto R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta} \text { and } v \in V(G)\right\}
$$

Chaotic behaviour of ratios

Definition

We define the activity-locus \mathcal{A}_{Δ} to be the activity-locus of the family

$$
\left\{\lambda \mapsto R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta} \text { and } v \in V(G)\right\}
$$

Definition

If the set

$$
\left\{R_{G, v}\left(\lambda_{0}\right): G \in \mathcal{G}_{\Delta} \text { and } v \in V(G) \text { with } \operatorname{deg}(v)=1\right\}
$$

is dense in $\widehat{\mathbb{C}}$, we say λ_{0} is a density parameter.

Chaotic behaviour of ratios

Definition

We define the activity-locus \mathcal{A}_{Δ} to be the activity-locus of the family

$$
\left\{\lambda \mapsto R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta} \text { and } v \in V(G)\right\}
$$

Definition

If the set

$$
\left\{R_{G, v}\left(\lambda_{0}\right): G \in \mathcal{G}_{\Delta} \text { and } v \in V(G) \text { with } \operatorname{deg}(v)=1\right\}
$$

is dense in $\widehat{\mathbb{C}}$, we say λ_{0} is a density parameter. We denote \mathcal{D}_{Δ} for the set of density parameters and define the density-locus to be the closure of \mathcal{D}_{Δ}.

Main theorem

Definition

We informally define the $\# \mathcal{P}$-locus as the closure of the collection of λ for which approximating $Z_{G}(\lambda)$ is \#P-hard for $G \in \mathcal{G}_{\Delta}$.

Main theorem

Definition

We informally define the $\# \mathcal{P}$-locus as the closure of the collection of λ for which approximating $Z_{G}(\lambda)$ is \#P-hard for $G \in \mathcal{G}_{\Delta}$.

Main Theorem

For any integer $\Delta \geq 3$ the zero-locus, the activity-locus and the density-locus are equal and contained in the $\# \mathcal{P}$-locus. In other words:

$$
\overline{\mathcal{Z}_{\Delta}}=\mathcal{A}_{\Delta}=\overline{\mathcal{D}_{\Delta}} \subseteq \overline{\# \mathcal{P}_{\Delta}} .
$$

Related results

A useful lemma

Lemma

Let $\lambda \in \mathbb{C} \backslash\{0\}$. If there exists a rooted graph $(G, v) \in \mathcal{G}_{\Delta}$ for which $R_{G, v}(\lambda) \in\{-1,0, \infty\}$, then there exists a graph H of maximum degree at most Δ for which $Z_{H}(\lambda)=0$.

A useful lemma

Lemma

Let $\lambda \in \mathbb{C} \backslash\{0\}$. If there exists a rooted graph $(G, v) \in \mathcal{G}_{\Delta}$ for which $R_{G, v}(\lambda) \in\{-1,0, \infty\}$, then there exists a graph H of maximum degree at most Δ for which $Z_{H}(\lambda)=0$.

Proof.

We have $R_{G, v}(\lambda)=\frac{Z_{G, v}^{i n}(\lambda)}{Z_{G, v}^{o t t}(\lambda)}$

A useful lemma

Lemma

Let $\lambda \in \mathbb{C} \backslash\{0\}$. If there exists a rooted graph $(G, v) \in \mathcal{G}_{\Delta}$ for which $R_{G, v}(\lambda) \in\{-1,0, \infty\}$, then there exists a graph H of maximum degree at most Δ for which $Z_{H}(\lambda)=0$.

Proof.

We have $R_{G, v}(\lambda)=\frac{Z_{G, v}^{\text {in }}(\lambda)}{Z_{G, v}^{u t}(\lambda)}$
Note $Z_{G, v}^{\text {out }}(\lambda)=Z_{G-v}(\lambda)$

A useful lemma

Lemma

Let $\lambda \in \mathbb{C} \backslash\{0\}$. If there exists a rooted graph $(G, v) \in \mathcal{G}_{\Delta}$ for which $R_{G, v}(\lambda) \in\{-1,0, \infty\}$, then there exists a graph H of maximum degree at most Δ for which $Z_{H}(\lambda)=0$.

Proof.

We have $R_{G, v}(\lambda)=\frac{Z_{G, v}^{i_{n}}(\lambda)}{Z_{G, v}^{o t}(\lambda)}$
Note $Z_{G, v}^{\text {out }}(\lambda)=Z_{G-v}(\lambda)$ and $Z_{G, v}^{\text {in }}(\lambda)=\lambda \cdot Z_{G-N[v]}(\lambda)$

A useful lemma

Lemma

Let $\lambda \in \mathbb{C} \backslash\{0\}$. If there exists a rooted graph $(G, v) \in \mathcal{G}_{\Delta}$ for which $R_{G, v}(\lambda) \in\{-1,0, \infty\}$, then there exists a graph H of maximum degree at most Δ for which $Z_{H}(\lambda)=0$.

Proof.

We have $R_{G, v}(\lambda)=\frac{Z_{G, v}^{i_{n}}(\lambda)}{Z_{G, v}^{o t}(\lambda)}$
Note $Z_{G, v}^{\text {out }}(\lambda)=Z_{G-v}(\lambda)$ and $Z_{G, v}^{\text {in }}(\lambda)=\lambda \cdot Z_{G-N[v]}(\lambda)$
Now look at $\frac{\lambda \cdot Z_{G-N[v]}(\lambda)}{Z_{G-v}(\lambda)}$

Active parameters have zeros nearby

Corollary
For all $\Delta \geq 2$ the activity-locus is contained in the zero-locus, i.e. $\mathcal{A}_{\Delta} \subseteq \overline{\mathcal{Z}_{\Delta}}$.

Proof.

Active parameters have zeros nearby

Corollary

For all $\Delta \geq 2$ the activity-locus is contained in the zero-locus, i.e. $\mathcal{A}_{\Delta} \subseteq \overline{\mathcal{Z}_{\Delta}}$.

Proof.

Claim: at each $\lambda_{0} \in \mathbb{C} \backslash \overline{\mathcal{Z}_{\Delta}}$ the family
$\left\{\lambda \mapsto R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta}\right.$ and $\left.v \in V(G)\right\}$ is locally normal.

Active parameters have zeros nearby

Corollary

For all $\Delta \geq 2$ the activity-locus is contained in the zero-locus, i.e. $\mathcal{A}_{\Delta} \subseteq \overline{\mathcal{Z}_{\Delta}}$.

Proof.

Claim: at each $\lambda_{0} \in \mathbb{C} \backslash \overline{\mathcal{Z}_{\Delta}}$ the family
$\left\{\lambda \mapsto R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta}\right.$ and $\left.v \in V(G)\right\}$ is locally normal. If $\lambda_{0} \neq 0$, take a neighborhood U avoiding 0 .

Active parameters have zeros nearby

Corollary

For all $\Delta \geq 2$ the activity-locus is contained in the zero-locus, i.e. $\mathcal{A}_{\Delta} \subseteq \overline{\mathcal{Z}_{\Delta}}$.

Proof.

Claim: at each $\lambda_{0} \in \mathbb{C} \backslash \overline{\mathcal{Z}_{\Delta}}$ the family
$\left\{\lambda \mapsto R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta}\right.$ and $\left.v \in V(G)\right\}$ is locally normal. If
$\lambda_{0} \neq 0$, take a neighborhood U avoiding 0 . Previous Lemma shows that on U the family avoids $\{-1,0, \infty\}$.

Active parameters have zeros nearby

Corollary

For all $\Delta \geq 2$ the activity-locus is contained in the zero-locus, i.e. $\mathcal{A}_{\Delta} \subseteq \overline{\mathcal{Z}_{\Delta}}$.

Proof.

Claim: at each $\lambda_{0} \in \mathbb{C} \backslash \overline{\mathcal{Z}_{\Delta}}$ the family
$\left\{\lambda \mapsto R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta}\right.$ and $\left.v \in V(G)\right\}$ is locally normal. If
$\lambda_{0} \neq 0$, take a neighborhood U avoiding 0 . Previous Lemma shows that on U the family avoids $\{-1,0, \infty\}$.

Montel's theorem

Let \mathcal{F} a family of holomorphic functions $f: U \rightarrow \widehat{\mathbb{C}}$ for which there are three distinct values that each $f \in \mathcal{F}$ omits. Then \mathcal{F} is normal on S.

But what about $\lambda_{0}=0$?

Notation

Denote the open disk around 0 with radius $\frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}}$ by B_{Δ}.

But what about $\lambda_{0}=0$?

Notation

Denote the open disk around 0 with radius $\frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}}$ by B_{Δ}. This region is known as the Shearer region.

But what about $\lambda_{0}=0$?

Notation

Denote the open disk around 0 with radius $\frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}}$ by B_{Δ}. This region is known as the Shearer region.

You can show that for $\lambda \in B_{\Delta}$, the family

$$
\left\{\lambda \mapsto R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta} \text { and } v \in V(G)\right\}
$$

maps into an open disk $D\left(0, \frac{1}{\Delta-1}\right)$.

But what about $\lambda_{0}=0$?

Notation

Denote the open disk around 0 with radius $\frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}}$ by B_{Δ}. This region is known as the Shearer region.

You can show that for $\lambda \in B_{\Delta}$, the family

$$
\left\{\lambda \mapsto R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta} \text { and } v \in V(G)\right\}
$$

maps into an open disk $D\left(0, \frac{1}{\Delta-1}\right)$.

Lemma

Let $\Delta \geq 2$ be an integer. Then B_{Δ} is disjoint from the activitylocus, the density-locus and the zero-locus, so

$$
B_{\Delta} \cap \mathcal{A}_{\Delta}=B_{\Delta} \cap \overline{\mathcal{D}_{\Delta}}=B_{\Delta} \cap \overline{\mathcal{Z}_{\Delta}}=\emptyset
$$

Activity locus for paths

Figure: A path with root v in an endpoint

Activity locus for paths

Figure: A path with root v in an endpoint

Remark

The family $\left\{\lambda \mapsto R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta}\right.$ and $\left.v \in V(G)\right\}$ contains the family of ratios for these rooted paths with the root chosen in the endpoint.

Activity locus for paths

Figure: A path with root v in an endpoint

Remark

The family $\left\{\lambda \mapsto R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta}\right.$ and $\left.v \in V(G)\right\}$ contains the family of ratios for these rooted paths with the root chosen in the endpoint. By our example, we know this is exactly the activity locus of $\left\{\lambda \mapsto f_{\lambda}^{n}(0)\right\}$, which we determined to be $\left(-\infty,-\frac{1}{4}\right]$.

Activity locus for paths

Figure: A path with root v in an endpoint

Remark

The family $\left\{\lambda \mapsto R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta}\right.$ and $\left.v \in V(G)\right\}$ contains the family of ratios for these rooted paths with the root chosen in the endpoint. By our example, we know this is exactly the activity locus of $\left\{\lambda \mapsto f_{\lambda}^{n}(0)\right\}$, which we determined to be $\left(-\infty,-\frac{1}{4}\right]$.

Corollary

We have for each $\Delta \geq 2$ that

$$
\left(-\infty,-\frac{1}{4}\right] \subseteq \mathcal{A}_{\Delta}
$$

Ratio -1

Lemma

Let $\lambda \in \mathbb{C}$ and $G \in \mathcal{G}_{\Delta}$ with $Z_{G}(\lambda)=0$. Then there is a rooted tree (T, u) with $\operatorname{deg}(u)=1$ and $R_{T, u}(\lambda)=-1$.

Proof.

Ratio -1

Lemma

Let $\lambda \in \mathbb{C}$ and $G \in \mathcal{G}_{\Delta}$ with $Z_{G}(\lambda)=0$. Then there is a rooted tree (T, u) with $\operatorname{deg}(u)=1$ and $R_{T, u}(\lambda)=-1$.

Proof.

There is a tree \tilde{T} with $Z_{\tilde{T}}(\lambda)=0$

Ratio -1

Lemma

Let $\lambda \in \mathbb{C}$ and $G \in \mathcal{G}_{\Delta}$ with $Z_{G}(\lambda)=0$. Then there is a rooted tree (T, u) with $\operatorname{deg}(u)=1$ and $R_{T, u}(\lambda)=-1$.

Proof.

There is a tree \tilde{T} with $Z_{\tilde{T}}(\lambda)=0$
Now take a tree T with minimal amount of vertices and $Z_{T}(\lambda)=0$

Ratio -1

Lemma

Let $\lambda \in \mathbb{C}$ and $G \in \mathcal{G}_{\Delta}$ with $Z_{G}(\lambda)=0$. Then there is a rooted tree (T, u) with $\operatorname{deg}(u)=1$ and $R_{T, u}(\lambda)=-1$.

Proof.

There is a tree \tilde{T} with $Z_{\tilde{T}}(\lambda)=0$
Now take a tree T with minimal amount of vertices and
$Z_{T}(\lambda)=0$
Then let u a leaf of T, we have $0=Z_{T, u}^{\text {out }}(\lambda)+Z_{T, u}^{\text {in }}(\lambda)$

Ratio -1

Lemma

Let $\lambda \in \mathbb{C}$ and $G \in \mathcal{G}_{\Delta}$ with $Z_{G}(\lambda)=0$. Then there is a rooted tree (T, u) with $\operatorname{deg}(u)=1$ and $R_{T, u}(\lambda)=-1$.

Proof.
There is a tree \tilde{T} with $Z_{\tilde{T}}(\lambda)=0$
Now take a tree T with minimal amount of vertices and
$Z_{T}(\lambda)=0$
Then let u a leaf of T, we have $0=Z_{T, u}^{\text {out }}(\lambda)+Z_{T, u}^{i n}(\lambda)$
Note that $Z_{T, u}^{\text {out }}(\lambda)=Z_{T-u}(\lambda) \neq 0$, so $R_{T, u}(\lambda)=-1$

Zeros imply activity

Proposition
 Let $\Delta \geq 2$. Then $\overline{\mathcal{Z}_{\Delta}} \subseteq \mathcal{A}_{\Delta}$.

Proof.

Zeros imply activity

Proposition

Let $\Delta \geq 2$. Then $\overline{\mathcal{Z}_{\Delta}} \subseteq \mathcal{A}_{\Delta}$.

Proof.

Zeros imply activity

Proposition

Let $\Delta \geq 2$. Then $\overline{\mathcal{Z}_{\Delta}} \subseteq \mathcal{A}_{\Delta}$.

Proof.

Denote the tree on the right as $\left(T_{n}, v\right)$ and the rooted path $\left(P_{n}, v_{n}\right)$. Then

$$
R_{T_{n}, v}=R_{P_{n}, v_{n}} \circ R_{T, u} .
$$

Zeros imply activity

Proposition

Let $\Delta \geq 2$. Then $\overline{\mathcal{Z}_{\Delta}} \subseteq \mathcal{A}_{\Delta}$.

Proof.

Denote the tree on the right as $\left(T_{n}, v\right)$ and the rooted path $\left(P_{n}, v_{n}\right)$. Then

$$
R_{T_{n}, v}=R_{P_{n}, v_{n}} \circ R_{T, u} .
$$

Now $\left\{\lambda \mapsto R_{T_{n}, v}(\lambda)\right\}_{n \geq 0}$ is not normal on V, so λ is active.

Recap

Main Theorem

For any integer $\Delta \geq 3$ the zero-locus, the activity-locus and the density-locus are equal and contained in the $\# \mathcal{P}$-locus. In other words:

$$
\overline{\mathcal{Z}_{\Delta}}=\mathcal{A}_{\Delta}=\overline{\mathcal{D}_{\Delta}} \subseteq \overline{\# \mathcal{P}_{\Delta}}
$$

Exponentially fast implementation

Lemma

Let $\Delta \geq 3$ be an integer. Let $\lambda_{0} \in \mathcal{D}_{\Delta} \cap \mathbb{Q}[i]$. Then given $P \in \mathbb{Q}[i]$ and rational $\varepsilon>0$ there exists an algorithm that generates a rooted tree (T, v) such that $\left|R_{T, v}\left(\lambda_{0}\right)-P\right| \leq \varepsilon$ and $Z_{T, v}^{\text {out }}\left(\lambda_{0}\right) \neq 0$, and outputs $Z_{T, v}^{\text {in }}\left(\lambda_{0}\right)$ and $Z_{T, v}^{\text {out }}\left(\lambda_{0}\right)$ in time bounded by poly $(\operatorname{size}(\varepsilon, P))$.

Exponentially fast implementation

Lemma

Let $\Delta \geq 3$ be an integer. Let $\lambda_{0} \in \mathcal{D}_{\Delta} \cap \mathbb{Q}[i]$. Then given $P \in \mathbb{Q}[i]$ and rational $\varepsilon>0$ there exists an algorithm that generates a rooted tree (T, v) such that $\left|R_{T, v}\left(\lambda_{0}\right)-P\right| \leq \varepsilon$ and $Z_{T, v}^{\text {out }}\left(\lambda_{0}\right) \neq 0$, and outputs $Z_{T, v}^{\text {in }}\left(\lambda_{0}\right)$ and $Z_{T, v}^{\text {out }}\left(\lambda_{0}\right)$ in time bounded by poly $(\operatorname{size}(\varepsilon, P))$.

Now in [Bez+20, Section 6] the authors show that a polynomial time algorithm to approximate $\left|Z_{G}\left(\lambda_{0}\right)\right|$ within a constant factor, combined with the Lemma above for λ_{0} yields an algorithm that on input of a graph G of maximum degree at most Δ exactly computes $Z_{G}(1)$, the number of independent sets of G, in polynomial time in the number of vertices of G.

Final Remarks

Remark

Instead of looking at the class of bounded degree graphs \mathcal{G}_{Δ}, you could look at other classes of graphs.

Final Remarks

Remark

Instead of looking at the class of bounded degree graphs \mathcal{G}_{Δ}, you could look at other classes of graphs.

Question

Is the region $\mathbb{C} \backslash \overline{\mathcal{Z}_{\Delta}}$ connected?

The end

Thank you for your attention!

Cayley trees

Figure: Cayley tree with down degree $d=2$

Cayley trees

Figure: Cayley tree with down degree $d=2$
Iteration of the map $f_{\lambda, d}(z)=\frac{\lambda}{(1+z)^{d}}$

Activity locus Cayley trees

down-degree 2

down-degree 4

Complexity of approximating $Z_{G}(\lambda)$

Let $\lambda \in \mathbb{Q}[i], \Delta \in \mathbb{N}$ and consider the following computational problems.
Name \#IndependenceNorm (λ, Δ, K)
Input A graph G of maximum degree at most Δ.
Output If $Z_{G}(\lambda) \neq 0$ the algorithm must output a rational number N such that $N / K \leq\left|Z_{G}(\lambda)\right| \leq K N$. If $Z_{G}(\lambda)=0$ the algorithm may output any rational number.
Name \#IndependenceArg (λ, Δ, ρ)
Input A graph G of maximum degree at most Δ.
Output If $Z_{G}(\lambda) \neq 0$ the algorithm must output a rational number A such that $|A-a| \leq \rho$ for some $a \in \arg \left(Z_{G}(\lambda)\right.$. If $Z_{G}(\lambda)=0$ the algorithm may output any rational number.

Complexity of approximating $Z_{G}(\lambda)$

For most $\lambda \in \mathbb{C}$ exact computation of $Z_{G}(\lambda)$ for large graphs is \#P-hard.

Complexity of approximating $Z_{G}(\lambda)$

For most $\lambda \in \mathbb{C}$ exact computation of $Z_{G}(\lambda)$ for large graphs is \#P-hard.
How hard it is to approximate $Z_{G}(\lambda)$ within a multiplicative factor depends on λ

Complexity of approximating $Z_{G}(\lambda)$

For most $\lambda \in \mathbb{C}$ exact computation of $Z_{G}(\lambda)$ for large graphs is \#P-hard.
How hard it is to approximate $Z_{G}(\lambda)$ within a multiplicative factor depends on λ
For some λ there is an algorithm that approximates $Z_{G}(\lambda)$ in time polynomial in $|V(G)|$, for some the problem is \# P-hard

Complexity of approximating $Z_{G}(\lambda)$

For most $\lambda \in \mathbb{C}$ exact computation of $Z_{G}(\lambda)$ for large graphs is \#P-hard.
How hard it is to approximate $Z_{G}(\lambda)$ within a multiplicative factor depends on λ
For some λ there is an algorithm that approximates $Z_{G}(\lambda)$ in time polynomial in $|V(G)|$, for some the problem is \# P-hard
The complexity class \#P is a counting version of $N P$.

Complexity of approximating $Z_{G}(\lambda)$

For most $\lambda \in \mathbb{C}$ exact computation of $Z_{G}(\lambda)$ for large graphs is \#P-hard.
How hard it is to approximate $Z_{G}(\lambda)$ within a multiplicative factor depends on λ
For some λ there is an algorithm that approximates $Z_{G}(\lambda)$ in time polynomial in $|V(G)|$, for some the problem is \# P-hard The complexity class \#P is a counting version of $N P$. Given $k \in \mathbb{N}$, determining whether a graph G has an independent set of size k is a problem in $N P$, counting the number of independent sets of size k is in \#P.

Complexity of approximating $Z_{G}(\lambda)$

For most $\lambda \in \mathbb{C}$ exact computation of $Z_{G}(\lambda)$ for large graphs is \#P-hard.
How hard it is to approximate $Z_{G}(\lambda)$ within a multiplicative factor depends on λ
For some λ there is an algorithm that approximates $Z_{G}(\lambda)$ in time polynomial in $|V(G)|$, for some the problem is \# P-hard
The complexity class \#P is a counting version of $N P$.
Given $k \in \mathbb{N}$, determining whether a graph G has an independent set of size k is a problem in $N P$, counting the number of independent sets of size k is in \#P.
Computing $Z_{G}(1)$ exactly is \#P-hard

