Zeros, chaotic ratios and the computational complexity of approximating the independence polynomial

## David de Boer Joint work with: Pjotr Buys, Lorenzo Guerini, Han Peters and Guus Regts

#### arXiv:2104.11615



UNIVERSITY OF AMSTERDAM Korteweg de Vries Institute for Mathematics

## June 13, 2021

{

$$\overline{\{\lambda \in \mathbb{C} : Z_G(\lambda) = 0 \text{ for some } G \in \mathcal{G}_{\Delta}\}} =$$

$$=$$

$$\lambda_0 \in \mathbb{C} \mid \{\lambda \mapsto R_{G,\nu}(\lambda) \mid (G,\nu) \in \mathcal{G}_{\Delta}\} \text{ is not locally normal at } \lambda_0\}$$

$$=$$

$$\overline{\{\lambda \in \mathbb{C} \mid \{R_{G,\nu}(\lambda) \mid (G,\nu) \in \mathcal{G}_{\Delta}\} \text{ is dense in } \mathbb{C}\}}$$

$$\subseteq$$

$$\overline{\{\lambda \in \mathbb{Q}[i]: \text{ approximating } Z_G(\lambda) \text{ is } \#P\text{-hard}\}}$$

æ

< Ξ

Let G = (V, E) a finite graph. A subset  $I \subseteq V$  is called an independent set if there are no edges between vertices in I. Denote  $\mathcal{I}(G)$  the set of independents sets of G.

→ Ξ →

Let G = (V, E) a finite graph. A subset  $I \subseteq V$  is called an independent set if there are no edges between vertices in I. Denote  $\mathcal{I}(G)$  the set of independents sets of G.



Figure: Independent set of size 2

# Independence polynomial

#### Definition

Let G = (V, E) a finite graph and  $\lambda \in \mathbb{C}$ . We define the independence polynomial as

$$Z_G(\lambda) := \sum_{I \in \mathcal{I}(G)} \lambda^{|I|}.$$

## Independence polynomial

### Definition

Let G = (V, E) a finite graph and  $\lambda \in \mathbb{C}$ . We define the independence polynomial as

$$Z_G(\lambda) := \sum_{I \in \mathcal{I}(G)} \lambda^{|I|}.$$



# Independence polynomial

### Definition

Let G = (V, E) a finite graph and  $\lambda \in \mathbb{C}$ . We define the independence polynomial as

$$Z_G(\lambda) := \sum_{I \in \mathcal{I}(G)} \lambda^{|I|}.$$



Figure: Independence polynomial  $1 + 4\lambda + 2\lambda^2$ .



Figure: Independence polynomial  $1 + 4\lambda + 2\lambda^2$ .

## Example

We define  $Z_{G,v}^{in}(\lambda) =$ 

Image: A image: A



Figure: Independence polynomial  $1 + 4\lambda + 2\lambda^2$ .

## Example

We define 
$$Z_{G,v}^{in}(\lambda) = \lambda + \lambda^2$$
 and  $Z_{G,v}^{out}(\lambda) =$ 

э

→ Ξ →



Figure: Independence polynomial  $1 + 4\lambda + 2\lambda^2$ .

## Example

We define 
$$Z_{G,v}^{in}(\lambda) = \lambda + \lambda^2$$
 and  $Z_{G,v}^{out}(\lambda) = 1 + 3\lambda + \lambda^2$ .

э

→ Ξ →



Figure: Independence polynomial  $1 + 4\lambda + 2\lambda^2$ .

## Example

We define 
$$Z_{G,v}^{in}(\lambda) = \lambda + \lambda^2$$
 and  $Z_{G,v}^{out}(\lambda) = 1 + 3\lambda + \lambda^2$ .

### Remark

We have 
$$Z_G(\lambda) = Z_{G,v}^{in}(\lambda) + Z_{G,v}^{out}(\lambda)$$
.

æ

Let G = (V, E) a graph, and  $v \in V$  a vertex. We define the rational function

$$R_{G,\nu}(\lambda) = rac{Z_{G,\nu}^{\prime n}(\lambda)}{Z_{G,\nu}^{out}(\lambda)}.$$

伺 ト イ ヨ ト イ ヨ ト

э

Let G = (V, E) a graph, and  $v \in V$  a vertex. We define the rational function

$$R_{G,\nu}(\lambda) = rac{Z_{G,\nu}^{\prime\prime}(\lambda)}{Z_{G,\nu}^{out}(\lambda)}.$$

#### Remark

Note that if  $R_{G,\nu}(\lambda) = -1$ , then we have  $Z_{G,\nu}^{in}(\lambda) = -Z_{G,\nu}^{out}(\lambda)$  and thus  $0 = Z_{G,\nu}^{in}(\lambda) + Z_{G,\nu}^{out}(\lambda) = Z_G(\lambda)$ .

伺 ト イヨ ト イヨ ト

# Ratio of a point and an edge

$$R_G(\bigcirc) = \frac{\bullet}{\bullet} = \frac{\lambda}{1}$$

David de Boer The independence polynomial

æ

## Ratio of a point and an edge



伺 ト イヨ ト イヨト

# Ratio of a point and an edge



#### Remark

If we define  $f_{\lambda}(z) = \frac{\lambda}{1+z}$ , we see the ratio of an edge is  $f_{\lambda}$  applied to the ratio of a point.

伺 ト イヨ ト イヨト

# Trees instead of graphs



David de Boer The independence polynomial

## Trees instead of graphs



The following result due to Bencs [Ben18], building on Weitz [Wei06].

#### Theorem

Let  $(G, v) \in \mathcal{G}_{\Delta}$  be a rooted connected graph. Then there is a rooted tree  $(T, u) \in \mathcal{G}_{\Delta}$  with  $\deg_{T}(u) = \deg_{G}(v)$  such that (i)  $Z_{G}$  divides  $Z_{T}$ , (ii)  $R_{G,v} = R_{T,u}$ .

## Zeros, chaotic ratios and approximation



### Notation

We denote

$$\mathcal{Z}_{\Delta} = \{\lambda \in \mathbb{C} : Z_{\mathcal{G}}(\lambda) = 0 \text{ for some } \mathcal{G} \in \mathcal{G}_{\Delta}\}.$$

We call  $\overline{\mathcal{Z}_{\Delta}}$  the zero-locus.

э

#### Notation

We denote

$$\mathcal{Z}_{\Delta} = \{\lambda \in \mathbb{C} : Z_{\mathcal{G}}(\lambda) = 0 \text{ for some } \mathcal{G} \in \mathcal{G}_{\Delta}\}.$$

We call  $\overline{\mathcal{Z}_{\Delta}}$  the zero-locus.

#### Remark

Suppose U is a simply connected open set containing 0 such that  $\mathcal{Z}_{\Delta} \cap U = \emptyset$ . Then for each  $\lambda \in U$  there exist a polynomial time algorithm to approximate  $Z_{G}(\lambda)$  for each  $G \in \mathcal{G}_{\Delta}$  by Patel and Regts [PR17].

Let  $\mathcal{F}$  a family of rational maps  $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ .

### Definition

For an open  $U \subseteq \hat{\mathbb{C}}$  the family  $\mathcal{F}$  is normal on U if each sequence  $\{f_n\}_{n\geq 0} \subseteq \mathcal{F}$  has a subsequence that converges to a holomorphic  $g: U \to \hat{\mathbb{C}}$ , uniformly on compact  $K \subseteq U$ .

Let  $\mathcal{F}$  a family of rational maps  $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ .

#### Definition

For an open  $U \subseteq \hat{\mathbb{C}}$  the family  $\mathcal{F}$  is normal on U if each sequence  $\{f_n\}_{n\geq 0} \subseteq \mathcal{F}$  has a subsequence that converges to a holomorphic  $g: U \to \hat{\mathbb{C}}$ , uniformly on compact  $K \subseteq U$ .

### Definition

We say a parameter  $\lambda_0$  is active for  $\mathcal{F}$  if for any open neighborhood of  $\lambda_0$  the family  $\mathcal{F}$  is not a normal family. The set of all active parameters is called the activity-locus of  $\mathcal{F}$ . Recall the map  $f_{\lambda}(z) = \frac{\lambda}{1+z}$ . We will determine when the family  $\{\lambda \mapsto f_{\lambda}^{n}(0)\}$  is normal.

• • = • • = •

Recall the map  $f_{\lambda}(z) = \frac{\lambda}{1+z}$ . We will determine when the family  $\{\lambda \mapsto f_{\lambda}^{n}(0)\}$  is normal.



Elliptic  $z \mapsto e^{i\theta} \cdot z$ Parabolic  $z \mapsto z + 1$ Loxodromic  $z \mapsto \xi \cdot z$  for some  $\xi \in \mathbb{C}^*$ with  $|\xi| < 1$ 

伺 ト イ ヨ ト イ ヨ ト

э

We define the activity-locus  $\mathcal{A}_{\Delta}$  to be the activity-locus of the family

$$\{\lambda \mapsto R_{G,v}(\lambda) : G \in \mathcal{G}_{\Delta} \text{ and } v \in V(G)\}.$$

We define the activity-locus  $\mathcal{A}_{\Delta}$  to be the activity-locus of the family

$$\{\lambda \mapsto R_{G,v}(\lambda) : G \in \mathcal{G}_{\Delta} \text{ and } v \in V(G)\}.$$

## Definition

If the set

$$\{R_{G,v}(\lambda_0): G \in \mathcal{G}_\Delta \text{ and } v \in V(G) \text{ with } \deg(v) = 1\}$$

is dense in  $\hat{\mathbb{C}}$ , we say  $\lambda_0$  is a density parameter.

We define the activity-locus  $\mathcal{A}_{\Delta}$  to be the activity-locus of the family

$$\{\lambda \mapsto R_{G,v}(\lambda) : G \in \mathcal{G}_{\Delta} \text{ and } v \in V(G)\}.$$

## Definition

If the set

$$\{R_{G,v}(\lambda_0): G \in \mathcal{G}_\Delta \text{ and } v \in V(G) \text{ with } \deg(v) = 1\}$$

is dense in  $\hat{\mathbb{C}}$ , we say  $\lambda_0$  is a density parameter. We denote  $\mathcal{D}_{\Delta}$  for the set of density parameters and define the density-locus to be the closure of  $\mathcal{D}_{\Delta}$ .

We informally define the  $\#\mathcal{P}$ -locus as the closure of the collection of  $\lambda$  for which approximating  $Z_G(\lambda)$  is #P-hard for  $G \in \mathcal{G}_{\Delta}$ .

We informally define the  $\#\mathcal{P}$ -locus as the closure of the collection of  $\lambda$  for which approximating  $Z_G(\lambda)$  is #P-hard for  $G \in \mathcal{G}_{\Delta}$ .

### Main Theorem

For any integer  $\Delta\geq 3$  the zero-locus, the activity-locus and the density-locus are equal and contained in the  $\#\mathcal{P}\text{-locus}$ . In other words:

$$\overline{\mathcal{Z}_{\Delta}} = \mathcal{A}_{\Delta} = \overline{\mathcal{D}_{\Delta}} \subseteq \overline{\#\mathcal{P}_{\Delta}}.$$



æ

Let  $\lambda \in \mathbb{C} \setminus \{0\}$ . If there exists a rooted graph  $(G, v) \in \mathcal{G}_{\Delta}$  for which  $R_{G,v}(\lambda) \in \{-1, 0, \infty\}$ , then there exists a graph H of maximum degree at most  $\Delta$  for which  $Z_H(\lambda) = 0$ .

Let  $\lambda \in \mathbb{C} \setminus \{0\}$ . If there exists a rooted graph  $(G, v) \in \mathcal{G}_{\Delta}$  for which  $R_{G,v}(\lambda) \in \{-1, 0, \infty\}$ , then there exists a graph H of maximum degree at most  $\Delta$  for which  $Z_H(\lambda) = 0$ .

#### Proof.

We have 
$$R_{G,v}(\lambda) = \frac{Z_{G,v}^{m}(\lambda)}{Z_{G,v}^{out}(\lambda)}$$

/⊒ ▶ ◀ ⊒ ▶ ◀

Let  $\lambda \in \mathbb{C} \setminus \{0\}$ . If there exists a rooted graph  $(G, v) \in \mathcal{G}_{\Delta}$  for which  $R_{G,v}(\lambda) \in \{-1, 0, \infty\}$ , then there exists a graph H of maximum degree at most  $\Delta$  for which  $Z_H(\lambda) = 0$ .

#### Proof.

We have 
$$R_{G,v}(\lambda) = \frac{Z_{G,v}^{in}(\lambda)}{Z_{G,v}^{out}(\lambda)}$$
  
Note  $Z_{G,v}^{out}(\lambda) = Z_{G-v}(\lambda)$ 

→ < Ξ → <</p>

Let  $\lambda \in \mathbb{C} \setminus \{0\}$ . If there exists a rooted graph  $(G, v) \in \mathcal{G}_{\Delta}$  for which  $R_{G,v}(\lambda) \in \{-1, 0, \infty\}$ , then there exists a graph H of maximum degree at most  $\Delta$  for which  $Z_H(\lambda) = 0$ .

#### Proof.

We have 
$$R_{G,\nu}(\lambda) = \frac{Z_{G,\nu}^{in}(\lambda)}{Z_{G,\nu}^{out}(\lambda)}$$
  
Note  $Z_{G,\nu}^{out}(\lambda) = Z_{G-\nu}(\lambda)$  and  $Z_{G,\nu}^{in}(\lambda) = \lambda \cdot Z_{G-N[\nu]}(\lambda)$ 

► < Ξ ► <</p>

Let  $\lambda \in \mathbb{C} \setminus \{0\}$ . If there exists a rooted graph  $(G, v) \in \mathcal{G}_{\Delta}$  for which  $R_{G,v}(\lambda) \in \{-1, 0, \infty\}$ , then there exists a graph H of maximum degree at most  $\Delta$  for which  $Z_H(\lambda) = 0$ .

#### Proof.

We have 
$$R_{G,v}(\lambda) = \frac{Z_{G,v}^{in}(\lambda)}{Z_{G,v}^{out}(\lambda)}$$
  
Note  $Z_{G,v}^{out}(\lambda) = Z_{G-v}(\lambda)$  and  $Z_{G,v}^{in}(\lambda) = \lambda \cdot Z_{G-N[v]}(\lambda)$   
Now look at  $\frac{\lambda \cdot Z_{G-N[v]}(\lambda)}{Z_{G-v}(\lambda)}$ 

► < Ξ ► <</p>
For all  $\Delta \ge 2$  the activity-locus is contained in the zero-locus, i.e.  $\mathcal{A}_{\Delta} \subseteq \overline{\mathcal{Z}_{\Delta}}$ .

## Proof.

▲ 臣 ▶ ▲

For all  $\Delta \ge 2$  the activity-locus is contained in the zero-locus, i.e.  $\mathcal{A}_{\Delta} \subseteq \overline{\mathcal{Z}_{\Delta}}$ .

## Proof.

Claim: at each  $\lambda_0 \in \mathbb{C} \setminus \overline{\mathcal{Z}}_{\Delta}$  the family  $\{\lambda \mapsto R_{G,v}(\lambda) : G \in \mathcal{G}_{\Delta} \text{ and } v \in V(G)\}$  is locally normal.

For all  $\Delta \ge 2$  the activity-locus is contained in the zero-locus, i.e.  $\mathcal{A}_{\Delta} \subseteq \overline{\mathcal{Z}_{\Delta}}$ .

#### Proof.

Claim: at each  $\lambda_0 \in \mathbb{C} \setminus \overline{Z_\Delta}$  the family  $\{\lambda \mapsto R_{G,\nu}(\lambda) : G \in \mathcal{G}_\Delta \text{ and } \nu \in V(G)\}$  is locally normal. If  $\lambda_0 \neq 0$ , take a neighborhood U avoiding 0.

For all  $\Delta \ge 2$  the activity-locus is contained in the zero-locus, i.e.  $\mathcal{A}_{\Delta} \subseteq \overline{\mathcal{Z}_{\Delta}}$ .

#### Proof.

Claim: at each  $\lambda_0 \in \mathbb{C} \setminus \overline{\mathcal{Z}}_{\Delta}$  the family  $\{\lambda \mapsto R_{G,v}(\lambda) : G \in \mathcal{G}_{\Delta} \text{ and } v \in V(G)\}$  is locally normal. If  $\lambda_0 \neq 0$ , take a neighborhood U avoiding 0. Previous Lemma shows that on U the family avoids  $\{-1, 0, \infty\}$ .

For all  $\Delta \ge 2$  the activity-locus is contained in the zero-locus, i.e.  $\mathcal{A}_{\Delta} \subseteq \overline{\mathcal{Z}_{\Delta}}$ .

#### Proof.

Claim: at each  $\lambda_0 \in \mathbb{C} \setminus \overline{\mathcal{Z}}_{\Delta}$  the family  $\{\lambda \mapsto R_{G,v}(\lambda) : G \in \mathcal{G}_{\Delta} \text{ and } v \in V(G)\}$  is locally normal. If  $\lambda_0 \neq 0$ , take a neighborhood U avoiding 0. Previous Lemma shows that on U the family avoids  $\{-1, 0, \infty\}$ .

# Montel's theorem

Let  $\mathcal{F}$  a family of holomorphic functions  $f : U \to \hat{\mathbb{C}}$  for which there are three distinct values that each  $f \in \mathcal{F}$  omits. Then  $\mathcal{F}$  is normal on S.

# But what about $\lambda_0 = 0$ ?

## Notation

Denote the open disk around 0 with radius  $\frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}}$  by  $B_{\Delta}$ .

→ < Ξ → <</p>

# But what about $\lambda_0 = 0$ ?

## Notation

Denote the open disk around 0 with radius  $\frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}}$  by  $B_{\Delta}$ . This region is known as the Shearer region.

#### Notation

Denote the open disk around 0 with radius  $\frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}}$  by  $B_{\Delta}$ . This region is known as the Shearer region.

You can show that for  $\lambda \in B_{\Delta}$ , the family

$$\{\lambda \mapsto R_{G,v}(\lambda) : G \in \mathcal{G}_\Delta \text{ and } v \in V(G)\}$$

maps into an open disk  $D(0, \frac{1}{\Delta-1})$ .

#### Notation

Denote the open disk around 0 with radius  $\frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}}$  by  $B_{\Delta}$ . This region is known as the Shearer region.

You can show that for  $\lambda \in B_{\Delta}$ , the family

$$\{\lambda\mapsto {\sf R}_{{\sf G},v}(\lambda):\,{\sf G}\in {\cal G}_\Delta \,\, ext{and}\,\,v\in V({\sf G})\}$$

maps into an open disk  $D(0, \frac{1}{\Delta-1})$ .

#### Lemma

Let  $\Delta \ge 2$  be an integer. Then  $B_{\Delta}$  is disjoint from the activitylocus, the density-locus and the zero-locus, so

$$B_{\Delta} \cap \mathcal{A}_{\Delta} = B_{\Delta} \cap \overline{\mathcal{D}_{\Delta}} = B_{\Delta} \cap \overline{\mathcal{Z}_{\Delta}} = \emptyset.$$

V

Figure: A path with root v in an endpoint



Figure: A path with root v in an endpoint

#### Remark

The family  $\{\lambda \mapsto R_{G,\nu}(\lambda) : G \in \mathcal{G}_{\Delta} \text{ and } \nu \in V(G)\}$  contains the family of ratios for these rooted paths with the root chosen in the endpoint.

- ₹ 🖬 🕨



Figure: A path with root v in an endpoint

#### Remark

The family  $\{\lambda \mapsto R_{G,v}(\lambda) : G \in \mathcal{G}_{\Delta} \text{ and } v \in V(G)\}$  contains the family of ratios for these rooted paths with the root chosen in the endpoint. By our example, we know this is exactly the activity locus of  $\{\lambda \mapsto f_{\lambda}^{n}(0)\}$ , which we determined to be  $(-\infty, -\frac{1}{4}]$ .



Figure: A path with root v in an endpoint

#### Remark

The family  $\{\lambda \mapsto R_{G,\nu}(\lambda) : G \in \mathcal{G}_{\Delta} \text{ and } \nu \in V(G)\}$  contains the family of ratios for these rooted paths with the root chosen in the endpoint. By our example, we know this is exactly the activity locus of  $\{\lambda \mapsto f_{\lambda}^{n}(0)\}$ , which we determined to be  $(-\infty, -\frac{1}{4}]$ .

#### Corollary

We have for each  $\Delta \ge 2$  that

$$(-\infty,-rac{1}{4}]\subseteq \mathcal{A}_\Delta$$

Let  $\lambda \in \mathbb{C}$  and  $G \in \mathcal{G}_{\Delta}$  with  $Z_G(\lambda) = 0$ . Then there is a rooted tree (T, u) with deg(u) = 1 and  $R_{T,u}(\lambda) = -1$ .

#### Proof.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

э

Let  $\lambda \in \mathbb{C}$  and  $G \in \mathcal{G}_{\Delta}$  with  $Z_G(\lambda) = 0$ . Then there is a rooted tree (T, u) with deg(u) = 1 and  $R_{T,u}(\lambda) = -1$ .

#### Proof.

There is a tree  $\tilde{T}$  with  $Z_{\tilde{T}}(\lambda) = 0$ 

< 同 ト < 三 ト < 三 ト

Let  $\lambda \in \mathbb{C}$  and  $G \in \mathcal{G}_{\Delta}$  with  $Z_G(\lambda) = 0$ . Then there is a rooted tree (T, u) with deg(u) = 1 and  $R_{T,u}(\lambda) = -1$ .

#### Proof.

There is a tree  $\tilde{T}$  with  $Z_{\tilde{T}}(\lambda) = 0$ 

Now take a tree T with minimal amount of vertices and  $Z_T(\lambda) = 0$ 

Let  $\lambda \in \mathbb{C}$  and  $G \in \mathcal{G}_{\Delta}$  with  $Z_G(\lambda) = 0$ . Then there is a rooted tree (T, u) with deg(u) = 1 and  $R_{T,u}(\lambda) = -1$ .

#### Proof.

There is a tree  $\tilde{T}$  with  $Z_{\tilde{T}}(\lambda) = 0$ 

Now take a tree T with minimal amount of vertices and  $Z_T(\lambda) = 0$ 

Then let *u* a leaf of *T*, we have  $0 = Z_{T,u}^{out}(\lambda) + Z_{T,u}^{in}(\lambda)$ 

Let  $\lambda \in \mathbb{C}$  and  $G \in \mathcal{G}_{\Delta}$  with  $Z_G(\lambda) = 0$ . Then there is a rooted tree (T, u) with deg(u) = 1 and  $R_{T,u}(\lambda) = -1$ .

#### Proof.

There is a tree  $\tilde{T}$  with  $Z_{\tilde{T}}(\lambda) = 0$ 

Now take a tree T with minimal amount of vertices and  $Z_T(\lambda) = 0$ 

Then let *u* a leaf of *T*, we have  $0 = Z_{T,u}^{out}(\lambda) + Z_{T,u}^{in}(\lambda)$ Note that  $Z_{T,u}^{out}(\lambda) = Z_{T-u}(\lambda) \neq 0$ , so  $R_{T,u}(\lambda) = -1$ 

## Proposition

Let  $\Delta \geq 2$ . Then  $\overline{\mathcal{Z}_{\Delta}} \subseteq \mathcal{A}_{\Delta}$ .

# Proof.

David de Boer The independence polynomial

æ

# Proposition

Let 
$$\Delta \geq 2$$
. Then  $\overline{\mathcal{Z}_{\Delta}} \subseteq \mathcal{A}_{\Delta}$ .

# Proof.





æ

David de Boer The independence polynomial

## Proposition

Let 
$$\Delta \geq 2$$
. Then  $\overline{\mathcal{Z}_{\Delta}} \subseteq \mathcal{A}_{\Delta}$ .



Denote the tree on the right as  $(T_n, v)$  and the rooted path  $(P_n, v_n)$ . Then

$$R_{T_n,v}=R_{P_n,v_n}\circ R_{T,u}.$$

문 문 문

#### Proposition

Let 
$$\Delta \geq 2$$
. Then  $\overline{\mathcal{Z}_{\Delta}} \subseteq \mathcal{A}_{\Delta}$ .



Denote the tree on the right as  $(T_n, v)$  and the rooted path  $(P_n, v_n)$ . Then

$$R_{T_n,v}=R_{P_n,v_n}\circ R_{T,u}.$$

Now  $\{\lambda \mapsto R_{T_n,\nu}(\lambda)\}_{n \ge 0}$  is not normal on V, so  $\lambda$  is active.

#### Main Theorem

For any integer  $\Delta\geq 3$  the zero-locus, the activity-locus and the density-locus are equal and contained in the  $\#\mathcal{P}\text{-locus.}$  In other words:

$$\overline{\mathcal{Z}_{\Delta}} = \mathcal{A}_{\Delta} = \overline{\mathcal{D}_{\Delta}} \subseteq \overline{\#\mathcal{P}_{\Delta}}.$$

Let  $\Delta \geq 3$  be an integer. Let  $\lambda_0 \in \mathcal{D}_\Delta \cap \mathbb{Q}[i]$ . Then given  $P \in \mathbb{Q}[i]$  and rational  $\varepsilon > 0$  there exists an algorithm that generates a rooted tree (T, v) such that  $|R_{T,v}(\lambda_0) - P| \leq \varepsilon$  and  $Z_{T,v}^{out}(\lambda_0) \neq 0$ , and outputs  $Z_{T,v}^{in}(\lambda_0)$  and  $Z_{T,v}^{out}(\lambda_0)$  in time bounded by poly(size( $\varepsilon$ , P)).

Let  $\Delta \geq 3$  be an integer. Let  $\lambda_0 \in \mathcal{D}_\Delta \cap \mathbb{Q}[i]$ . Then given  $P \in \mathbb{Q}[i]$  and rational  $\varepsilon > 0$  there exists an algorithm that generates a rooted tree (T, v) such that  $|R_{T,v}(\lambda_0) - P| \leq \varepsilon$  and  $Z_{T,v}^{out}(\lambda_0) \neq 0$ , and outputs  $Z_{T,v}^{in}(\lambda_0)$  and  $Z_{T,v}^{out}(\lambda_0)$  in time bounded by poly(size( $\varepsilon$ , P)).

Now in [Bez+20, Section 6] the authors show that a polynomial time algorithm to approximate  $|Z_G(\lambda_0)|$  within a constant factor, combined with the Lemma above for  $\lambda_0$  yields an algorithm that on input of a graph G of maximum degree at most  $\Delta$  exactly computes  $Z_G(1)$ , the number of independent sets of G, in polynomial time in the number of vertices of G.

## Remark

Instead of looking at the class of bounded degree graphs  $\mathcal{G}_\Delta,$  you could look at other classes of graphs.

#### Remark

Instead of looking at the class of bounded degree graphs  $\mathcal{G}_\Delta,$  you could look at other classes of graphs.

## Question

Is the region  $\mathbb{C} \setminus \overline{\mathcal{Z}_{\Delta}}$  connected?

Thank you for your attention!

æ



Figure: Cayley tree with down degree d = 2

э

-



Figure: Cayley tree with down degree d = 2

Iteration of the map  $f_{\lambda,d}(z) = rac{\lambda}{(1+z)^d}$ 

# Activity locus Cayley trees



▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

э

Let  $\lambda \in \mathbb{Q}[i]$ ,  $\Delta \in \mathbb{N}$  and consider the following computational problems.

*Name* #IndependenceNorm( $\lambda, \Delta, K$ )

Input A graph G of maximum degree at most  $\Delta$ .

- Output If  $Z_G(\lambda) \neq 0$  the algorithm must output a rational number N such that  $N/K \leq |Z_G(\lambda)| \leq KN$ . If  $Z_G(\lambda) = 0$  the algorithm may output any rational number.
  - *Name* #IndependenceArg( $\lambda, \Delta, \rho$ )
  - Input A graph G of maximum degree at most  $\Delta$ .
- Output If  $Z_G(\lambda) \neq 0$  the algorithm must output a rational number A such that  $|A a| \leq \rho$  for some  $a \in \arg(Z_G(\lambda))$ . If  $Z_G(\lambda) = 0$  the algorithm may output any rational number.

何 ト イヨ ト イヨ ト

# Complexity of approximating $Z_G(\lambda)$

For most  $\lambda \in \mathbb{C}$  exact computation of  $Z_G(\lambda)$  for large graphs is #P-hard.

A B F A B F

For most  $\lambda \in \mathbb{C}$  exact computation of  $Z_G(\lambda)$  for large graphs is #P-hard.

How hard it is to approximate  $Z_G(\lambda)$  within a multiplicative factor depends on  $\lambda$ 

For most  $\lambda \in \mathbb{C}$  exact computation of  $Z_G(\lambda)$  for large graphs is #P-hard.

How hard it is to approximate  $Z_G(\lambda)$  within a multiplicative factor depends on  $\lambda$ 

For some  $\lambda$  there is an algorithm that approximates  $Z_G(\lambda)$  in time polynomial in |V(G)|, for some the problem is #P-hard

For most  $\lambda \in \mathbb{C}$  exact computation of  $Z_G(\lambda)$  for large graphs is #P-hard.

How hard it is to approximate  $Z_G(\lambda)$  within a multiplicative factor depends on  $\lambda$ 

For some  $\lambda$  there is an algorithm that approximates  $Z_G(\lambda)$  in time polynomial in |V(G)|, for some the problem is #P-hard The complexity class #P is a counting version of NP.
For most  $\lambda \in \mathbb{C}$  exact computation of  $Z_G(\lambda)$  for large graphs is #P-hard.

How hard it is to approximate  $Z_G(\lambda)$  within a multiplicative factor depends on  $\lambda$ 

For some  $\lambda$  there is an algorithm that approximates  $Z_G(\lambda)$  in time polynomial in |V(G)|, for some the problem is #P-hard

The complexity class #P is a counting version of NP.

Given  $k \in \mathbb{N}$ , determining whether a graph *G* has an independent set of size *k* is a problem in *NP*, counting the number of independent sets of size *k* is in #P.

For most  $\lambda \in \mathbb{C}$  exact computation of  $Z_G(\lambda)$  for large graphs is #P-hard.

How hard it is to approximate  $Z_G(\lambda)$  within a multiplicative factor depends on  $\lambda$ 

For some  $\lambda$  there is an algorithm that approximates  $Z_G(\lambda)$  in time polynomial in |V(G)|, for some the problem is #P-hard

The complexity class #P is a counting version of NP.

Given  $k \in \mathbb{N}$ , determining whether a graph *G* has an independent set of size *k* is a problem in *NP*, counting the number of independent sets of size *k* is in #P.

Computing  $Z_G(1)$  exactly is #P-hard