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Very short summary

{λ ∈ C : ZG (λ) = 0 for some G ∈ G∆}

=

{λ0 ∈ C | {λ 7→ RG ,v (λ) | (G , v) ∈ G∆} is not locally normal at λ0}

=

{λ ∈ C | {RG ,v (λ) | (G , v) ∈ G∆} is dense in C}

⊆

{λ ∈ Q[i ] : approximating ZG (λ) is #P-hard}
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Independent sets

Definition

Let G = (V ,E ) a finite graph. A subset I ⊆ V is called an
independent set if there are no edges between vertices in I . Denote
I(G ) the set of independents sets of G .

Figure: Independent set of size 2
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Independence polynomial

Definition

Let G = (V ,E ) a finite graph and λ ∈ C. We define the
independence polynomial as

ZG (λ) :=
∑

I∈I(G)

λ|I |.

Figure: Independence polynomial 1 + 4λ+ 2λ2.
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In and out

v

Figure: Independence polynomial 1 + 4λ+ 2λ2.

Example

We define Z in
G ,v (λ) =

λ+ λ2 and Z out
G ,v (λ) = 1 + 3λ+ λ2.

Remark

We have ZG (λ) = Z in
G ,v (λ) + Z out

G ,v (λ).
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Ratio

Definition

Let G = (V ,E ) a graph, and v ∈ V a vertex. We define the
rational function

RG ,v (λ) =
Z in
G ,v (λ)

Z out
G ,v (λ)

.

Remark

Note that if RG ,v (λ) = −1, then we have Z in
G ,v (λ) = −Z out

G ,v (λ) and

thus 0 = Z in
G ,v (λ) + Z out

G ,v (λ) = ZG (λ).
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Ratio of a point and an edge

RG ( ) = =
λ

1

RG

( )
= =

λ·
+

=
λ·1
1 λ+

Remark

If we define fλ(z) = λ
1+z , we see the ratio of an edge is fλ applied

to the ratio of a point.
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Trees instead of graphs

The following result due to Bencs [Ben18], building on Weitz
[Wei06].

Theorem

Let (G , v) ∈ G∆ be a rooted connected graph. Then there is a
rooted tree (T , u) ∈ G∆ with degT (u) = degG (v) such that

(i) ZG divides ZT ,

(ii) RG ,v = RT ,u.
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Zeros, chaotic ratios and approximation

Zeros of ZG (λ)

Statistical physics

Complexity of
approximating
ZG (λ)

Computer Science

Chaotic
behaviour
of RG (λ)

Complex dynamics

=

David de Boer The independence polynomial



Zeros and approximation

Notation

We denote

Z∆ = {λ ∈ C : ZG (λ) = 0 for some G ∈ G∆}.

We call Z∆ the zero-locus.

Remark

Suppose U is a simply connected open set containing 0 such that
Z∆ ∩ U = ∅. Then for each λ ∈ U there exist a polynomial time
algorithm to approximate ZG (λ) for each G ∈ G∆ by Patel and
Regts [PR17].
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Normal Family

Let F a family of rational maps f : Ĉ→ Ĉ.

Definition

For an open U ⊆ Ĉ the family F is normal on U if each sequence
{fn}n≥0 ⊆ F has a subsequence that converges to a holomorphic
g : U → Ĉ, uniformly on compact K ⊆ U.

Definition

We say a parameter λ0 is active for F if for any open
neighborhood of λ0 the family F is not a normal family. The set of
all active parameters is called the activity-locus of F .
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For an open U ⊆ Ĉ the family F is normal on U if each sequence
{fn}n≥0 ⊆ F has a subsequence that converges to a holomorphic
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Example Normality

Recall the map fλ(z) = λ
1+z . We will determine when the family

{λ 7→ f nλ (0)} is normal.

0Elliptic −1
4

Parabolic

Re

Im

Loxodromic

Elliptic z 7→
e iθ · z
Parabolic z 7→
z + 1

Loxodromic
z 7→ ξ · z for
some ξ ∈ C∗
with |ξ| < 1
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Chaotic behaviour of ratios

Definition

We define the activity-locus A∆ to be the activity-locus of the
family

{λ 7→ RG ,v (λ) : G ∈ G∆ and v ∈ V (G )}.

Definition

If the set

{RG ,v (λ0) : G ∈ G∆ and v ∈ V (G ) with deg(v) = 1}

is dense in Ĉ, we say λ0 is a density parameter. We denote D∆ for
the set of density parameters and define the density-locus to be the
closure of D∆.
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is dense in Ĉ, we say λ0 is a density parameter.

We denote D∆ for
the set of density parameters and define the density-locus to be the
closure of D∆.

David de Boer The independence polynomial



Chaotic behaviour of ratios

Definition

We define the activity-locus A∆ to be the activity-locus of the
family

{λ 7→ RG ,v (λ) : G ∈ G∆ and v ∈ V (G )}.

Definition

If the set

{RG ,v (λ0) : G ∈ G∆ and v ∈ V (G ) with deg(v) = 1}
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Main theorem

Definition

We informally define the #P-locus as the closure of the collection
of λ for which approximating ZG (λ) is #P-hard for G ∈ G∆.

Main Theorem

For any integer ∆ ≥ 3 the zero-locus, the activity-locus and the
density-locus are equal and contained in the #P-locus. In other
words:

Z∆ = A∆ = D∆ ⊆ #P∆.
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A useful lemma

Lemma

Let λ ∈ C \ {0}. If there exists a rooted graph (G , v) ∈ G∆ for
which RG ,v (λ) ∈ {−1, 0,∞}, then there exists a graph H of
maximum degree at most ∆ for which ZH(λ) = 0.

Proof.

We have RG ,v (λ) =
Z in
G ,v (λ)

Zout
G ,v (λ)

Note Z out
G ,v (λ) = ZG−v (λ) and Z in

G ,v (λ) = λ · ZG−N[v ](λ)

Now look at
λ·ZG−N[v ](λ)

ZG−v (λ)
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Active parameters have zeros nearby

Corollary

For all ∆ ≥ 2 the activity-locus is contained in the zero-locus, i.e.
A∆ ⊆ Z∆.

Proof.

Claim: at each λ0 ∈ C \ Z∆ the family
{λ 7→ RG ,v (λ) : G ∈ G∆ and v ∈ V (G )} is locally normal. If
λ0 6= 0, take a neighborhood U avoiding 0. Previous Lemma shows
that on U the family avoids {−1, 0,∞}.

Montel’s theorem

Let F a family of holomorphic functions f : U → Ĉ for which there
are three distinct values that each f ∈ F omits. Then F is normal
on S .

David de Boer The independence polynomial



Active parameters have zeros nearby

Corollary

For all ∆ ≥ 2 the activity-locus is contained in the zero-locus, i.e.
A∆ ⊆ Z∆.

Proof.

Claim: at each λ0 ∈ C \ Z∆ the family
{λ 7→ RG ,v (λ) : G ∈ G∆ and v ∈ V (G )} is locally normal.

If
λ0 6= 0, take a neighborhood U avoiding 0. Previous Lemma shows
that on U the family avoids {−1, 0,∞}.

Montel’s theorem

Let F a family of holomorphic functions f : U → Ĉ for which there
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But what about λ0 = 0?

Notation

Denote the open disk around 0 with radius (∆−1)∆−1

∆∆ by B∆.

This
region is known as the Shearer region.

You can show that for λ ∈ B∆, the family

{λ 7→ RG ,v (λ) : G ∈ G∆ and v ∈ V (G )}

maps into an open disk D(0, 1
∆−1 ).

Lemma

Let ∆ ≥ 2 be an integer. Then B∆ is disjoint from the activity-
locus, the density-locus and the zero-locus, so

B∆ ∩ A∆ = B∆ ∩ D∆ = B∆ ∩ Z∆ = ∅.
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Activity locus for paths

v

Figure: A path with root v in an endpoint

Remark

The family {λ 7→ RG ,v (λ) : G ∈ G∆ and v ∈ V (G )} contains the
family of ratios for these rooted paths with the root chosen in the
endpoint. By our example, we know this is exactly the activity
locus of {λ 7→ f nλ (0)}, which we determined to be (−∞,−1

4 ].

Corollary

We have for each ∆ ≥ 2 that

(−∞,−1

4
] ⊆ A∆
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Ratio −1

Lemma

Let λ ∈ C and G ∈ G∆ with ZG (λ) = 0. Then there is a rooted
tree (T , u) with deg(u) = 1 and RT ,u(λ) = −1.

Proof.

There is a tree T̃ with ZT̃ (λ) = 0

Now take a tree T with minimal amount of vertices and
ZT (λ) = 0

Then let u a leaf of T , we have 0 = Z out
T ,u(λ) + Z in

T ,u(λ)

Note that Z out
T ,u(λ) = ZT−u(λ) 6= 0, so RT ,u(λ) = −1
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Zeros imply activity

Proposition

Let ∆ ≥ 2. Then Z∆ ⊆ A∆.

Proof.

λ0

λ

0

−1

RT ,u(λ0) = −1

Re

Im

V

T T T

v

Denote the tree on the right as (Tn, v) and the rooted path
(Pn, vn). Then

RTn,v = RPn,vn ◦ RT ,u.

Now {λ 7→ RTn,v (λ)}n≥0 is not normal on V , so λ is active.
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Zeros imply activity
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Recap

Main Theorem

For any integer ∆ ≥ 3 the zero-locus, the activity-locus and the
density-locus are equal and contained in the #P-locus. In other
words:

Z∆ = A∆ = D∆ ⊆ #P∆.

David de Boer The independence polynomial



Exponentially fast implementation

Lemma

Let ∆ ≥ 3 be an integer. Let λ0 ∈ D∆ ∩Q[i ]. Then given
P ∈ Q[i ] and rational ε > 0 there exists an algorithm that
generates a rooted tree (T , v) such that |RT ,v (λ0)− P| ≤ ε and
Z out
T ,v (λ0) 6= 0, and outputs Z in

T ,v (λ0) and Z out
T ,v (λ0) in time

bounded by poly(size(ε,P)).

Now in [Bez+20, Section 6] the authors show that a polynomial
time algorithm to approximate |ZG (λ0)| within a constant factor,
combined with the Lemma above for λ0 yields an algorithm that
on input of a graph G of maximum degree at most ∆ exactly
computes ZG (1), the number of independent sets of G , in
polynomial time in the number of vertices of G .
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Final Remarks

Remark

Instead of looking at the class of bounded degree graphs G∆, you
could look at other classes of graphs.

Question

Is the region C \ Z∆ connected?
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The end

Thank you for your attention!
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Cayley trees

Figure: Cayley tree with down degree d = 2

Iteration of the map fλ,d(z) = λ
(1+z)d
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(1+z)d
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Activity locus Cayley trees

down-degree 2 down-degree 4

down-degree 3
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Complexity of approximating ZG (λ)

Let λ ∈ Q[i ], ∆ ∈ N and consider the following computational
problems.

Name #IndependenceNorm(λ,∆,K )

Input A graph G of maximum degree at most ∆.

Output If ZG (λ) 6= 0 the algorithm must output a rational number N
such that N/K ≤ |ZG (λ)| ≤ KN. If ZG (λ) = 0 the algorithm
may output any rational number.

Name #IndependenceArg(λ,∆, ρ)

Input A graph G of maximum degree at most ∆.

Output If ZG (λ) 6= 0 the algorithm must output a rational number A
such that |A− a| ≤ ρ for some a ∈ arg(ZG (λ). If ZG (λ) = 0
the algorithm may output any rational number.
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Complexity of approximating ZG (λ)

For most λ ∈ C exact computation of ZG (λ) for large graphs
is #P-hard.

How hard it is to approximate ZG (λ) within a multiplicative
factor depends on λ

For some λ there is an algorithm that approximates ZG (λ) in
time polynomial in |V (G )|, for some the problem is #P-hard

The complexity class #P is a counting version of NP.

Given k ∈ N, determining whether a graph G has an
independent set of size k is a problem in NP, counting the
number of independent sets of size k is in #P.

Computing ZG (1) exactly is #P-hard
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