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Potts Model Partition Function and Tutte Polynomial

The Potts model has long been of interest in statistical physics and is closely related to
the Tutte (also called Tutte-Whitney) polynomial in mathematical graph theory.

The physics context: statistical physics deals with properties of many-body systems.
The description of such systems uses a specified form of the interaction between the
dynamical variables. An example is magnetic systems, where the dynamical variables are
spins located at sites of a lattice. These interact with each other by an energy function,
the Hamiltonian H. A common limit is n → ∞ where n is the number of sites. In
practice, a typical number in experiments is Avogadro’s number, NAv = 6.02 × 1023

per mole.

Consider the general case of a graph G = (V, E), where V is the set of vertices
(sites) and E is the set of edges (bonds). Denote n = n(G) = |V | as the number of
vertices, e(G) = |E| as the number of edges, k(G) as the number of connected
components, and c(G) as the number of linearly independent circuits in G.

In statistical physics, one considers a many-body system in thermal equilibrium at a
temperature T . Let β = 1/(kBT ), where kB = 1.38 × 10−23 J/K is the
Boltzmann constant.



In its physics formulation, the Potts model describes a system with classical spins σi at
vertices of a lattice graph G, each of which can take on any of q different values in
{1, 2, ..., q}. The Hamiltonian of the Potts model is

H = −J
∑

eij

δσiσj

where δσiσj
is the Kronecker delta function and eij is an edge in G connecting vertices

i and j. The couplings J > 0 and J < 0 favor parallel and antiparallel neighboring
spins, and thus ferromagnetic (FM) and antiferromagnetic (AFM) spin ordering.

A useful function in the description of this system is the partition function:

Z =
∑

{σi}
e−βH =

∑

{σi}
e

K
∑

eij
δσiσj =

∑

{σi}

∏

eij

e
Kδσiσj

where K = βJ . The case q = 2 is the Ising model, which describes (i) uniaxial
magnets; (ii) structural phase transitions in binary alloys; and (iii) liquid-gas phase
transitions.



Consider the limit in which the number of vertices n → ∞ on a lattice or more
generally a graph G. Denote this limit for a family of graphs as {G} and define the
reduced dimensionless free energy (per vertex) as

f({G}) = lim
n→∞

1

n
ln[Z(G)]

The Gibbs free energy (per site) is −kBTf . The function f encodes much
information about the system; partial derivatives yield various thermodynamic functions.
For example, the internal energy U and specific heat C (per site) are

U = −∂f

∂β
, C = kBβ2 ∂2f

(∂β)2

The study of phase transitions is a major area in physics; a typical example is a
magnetic system in which, as the temperature decreases below a critical temperature
Tc, there is a nonzero uniform magnetization M (for FM case) or staggered
magnetization Mst (for AFM case), with associated non-analytic behavior in response
functions such as the specific heat and magnetic susceptibility.



Using the identity e
Kδσiσj = 1 + (eK − 1)δσiσj

= 1 + v δσiσj
, where

v = eK − 1, one can write Z as

Z =
∑

{σi}

[

∏

eij

(1 + vδσiσj
)
]

Def.: Given a graph G = (V, E), a spanning subgraph G′ = (V, E′) is a graph
containing all of the vertices of G and a subset of the edges of G, i.e., E′ ⊆ E.

Cluster formula for Z (Fortuin-Kasteleyn rep. 1967, 1972);

Z(G, q, v) =
∑

G′⊆G

qk(G′)ve(G′)

where k(G′) and e(G′) are the number of connected components and edges in G′.
This expresses Z in a purely graph-theoretic manner without any reference to the sum
over spin configurations. Without loss of generality, we take k(G) = 1.

Since k(G′) ≥ 1 and e(G′) ≥ 0, the cluster representation of Z shows that
Z(G, q, v) is a polynomial in q and v. Terms have 1 ≤ degq ≤ n(G) and
0 ≤ degv ≤ e(G). Hence, one can write Z(G, q, v) = qZr(G, q, v).



The cluster formula allows one to generalize q from nonnegative integers
q = 1, 2, 3... to nonnegative real numbers in physics. For the analysis of zeros of Z in
the variables q and v, one must generalize these further to complex variables.

The proof of the cluster formula is based on the 1-1 correspondence between the terms
in Z =

∑

{σi}
∏

eij
(1 + vδσiσj

) and spanning subgraphs G′ ⊆ G.

Sketch of proof, using, as illustration, G = C3, where Cn is the circuit graph with n
vertices. Here

Z(C3, q, v) =
∑

{σi}

∏

eij

(1 + vδσiσj
) =

∑

{σi}
(1 + vδσ1σ2)(1 + vδσ2σ3)(1 + vδσ3σ1)

There are four types of terms contributing (note relation with
∑

G′⊆G qk(G′)ve(G′))

• the term 1, corresponding to the G′ with three disjoint vertices, no edges, (so
e(G′) = 0, k(G′) = 3), for which the sum over the σi’s yields q3, i.e., one can
choose the σ’s independently in q3 ways;

• v(δσ1σ2 + δσ2σ3 + δσ3σ1), corresponding to the three G′s with one edge and one
disjoint vertex, so e(G′) = 1, k(G′) = 2. The first of these terms contributes if





σ1 = σ2; here one chooses σ1 = σ2 in any of q ways, and then σ3 independently
in any of q ways, for a total of q2 ways; similarly for the other two terms, so these
terms contribute 3q2v;

• v2(δσ1σ2δσ2σ3 + δσ2σ3δσ3σ1 + δσ3σ1δσ1σ2), corresponding to G′s with two edges,
so e(G′) = 2, k(G′) = 1. For the first term to contribute, all of the σ’s must be
equal, and there are q ways of choosing them; similarly for the other two terms, so
the total contribution is then 3qv2;

• v3(δσ1σ2δσ2σ3δσ3σ1), corresponding to G′ = G, with all edges present, so
e(G′) = 3, k(G′) = 1. For this term to contribute, all of the σ’s must be equal,
amounting to q possibilities, and yielding the term qv3.

So combining all of these terms, one gets Z(C3, q, v) = q3 + 3q2v + 3qv2 + qv3,
which is precisely

∑

G′⊆C3
qk(G′)ve(G′).

Now q3 + 3q2v + 3qv2 + qv3 = (q + v)3 + (q − 1)v3, so
Z(C3, q, v) = (q + v)3 + (q − 1)v3

By the same methods, one obtains the generalization

Z(Cn, q, v) = (q + v)n + (q − 1)vn



One can also consider the Potts model in an external magnetic field H that favors or
disfavors spin values in a subset Is = {1, ..., s} of the total set of q possible spin
values. Define h = βH and w = eh. Given a spanning subgraph G′ ⊆ G with
k(G′) connected components, denote these as G′

i, i = 1, ...k(G′).

We have obtained the generalized partition function for this case:

Z(G, q, s, v, w) =
∑

G′⊆G

ve(G′)
k(G′)
∏

i=1

(q − s + swn(G′
i))

(Chang and RS, J. Phys. A42, 385004 (2009); J. Stat. Phys. 138, 496 (2010); RS and
Xu, J. Stat. Phys. 139, 27 (2010)).

The factor q − s + swm for each connected component G′
i ∈ G′ can be understood

since each of the spins must have the same value σ in this term in the cluster sum; for
the s cases where σ ∈ Is, this gives swn(G′

i), while for the q − s cases where
σ /∈ Is, this gives q − s.

Henceforth, we take H = 0, i.e., zero external magnetic field.



Next, we define two important graph-theoretic polynomials:

Def. The chromatic polynomial P (G, q) is the number of ways of assigning q colors to
the vertices of G such that no two adjacent vertices have the same color. This is called
a proper q-coloring of (the vertices of) G, and so P (G, q) is the number of proper
q-colorings of G. The minimum number of colors needed for a proper q-coloring of G
is the chromatic number, χ(G).

In the antiferromagnetic Potts model, consider the limit T → 0, so K → −∞ (since
K = βJ and J < 0) and v = eK − 1 → −1. In this limit, the only spin
configurations that contribute to Z(G, q, v = −1) are those for which adjacent spins
have different values. Hence, the T = 0 limit of the Potts antiferromagnet partition
function is the chromatic polynomial:

Z(G, q, −1) = P (G, q)

P (G, q) always contains a factor q, so can write P (G, q) = qPr(G, q).

Def. A loop in a graph is an edge that connects a vertex back to itself, so the vertex is
adjacent to itself. Since a proper q-coloring of G requires adjacent vertices to have
different colors, P (G, q) = 0 if G contains a loop.



Graph coloring has long been of interest in mathematical graph theory; early work by
Birkhoff (1912, 1930) and Whitney (1932), subsequent work by Tutte, Read, and many
others. One aspect of this dealt with map coloring, i.e., face-coloring of planar graphs.

Def. a proper q-coloring of the faces of a graph is an assignment of colors, from a set
of q colors, to the faces of a graph such that no two adjacent faces (faces that share an
edge) have the same color.

For a planar graph G, there is a 1-1 correspondence between the vertices of G and the
faces of the planar dual graph G∗. Therefore, P (G, q) equivalently counts the proper
q-colorings of the vertices of G and the proper q-colorings of the faces of G∗.

Def. An edge in G∗ which, if cut, would increase the number of components of G∗ by
1 is called a bridge. A bridge in G∗ leads to a face being adjacent to itself across the
bridge. Since adjacent faces must have different colors in a proper q-coloring of the
faces of a planar graph G∗, this is not possible if G∗ contains any bridges. N.B.: A
bridge in G∗ is dual to a loop in G.

The Four-Color Theorem: If G is a planar graph with no loops, i.e., G∗ is a planar
graph with no bridges, then P (G, 4) > 0, i.e., there exists a proper q-coloring of the
vertices of G with q = 4 colors, or equivalently, there exists a proper q-coloring of the
faces of G∗ with q = 4 colors. This was proved in 1976 by Appel and Haken.



The chromatic polynomial is of interest not just in graph theory but also in applied
mathematics and engineering. One application is the following frequency allocation
problem:

Consider n radio broadcast transmitter stations; let each of these be represented by a
vertex of a graph G and define two transmitters as being adjacent (joined by a edge) if
they are closer than a certain distance to each other.

Now assign frequencies from a set of q values to these transmitters, subject to the
condition that adjacent stations should use different frequencies to avoid interference.
The number of ways of doing this is P (G, q).



A graph polynomial of major importance in mathematical graph theory is the Tutte
(also called Tutte-Whitney) polynomial, T (G, x, y) (Tutte, 1947, 1953, 1967)

T (G, x, y) =
∑

G′⊆G

(x − 1)k(G′)−k(G)(y − 1)c(G′)

where G′ is a spanning subgraph of G and k(G′) and c(G′) denote the number of
components and (linearly independent) cycles in G′, respectively.

Since k(G′) − k(G) ≥ 0 and c(G′) ≥ 0, it follows that T (G, x, y) is a polynomial
in x and y; terms have 0 ≤ degx ≤ n − 1 and 0 ≤ degy ≤ c(G)

The Potts model partition function Z(G, q, v) is equivalent to the Tutte polynomial
T (G, x, y) with the identification

x = 1 +
q

v
, y = v + 1

so q = (x − 1)(y − 1) and x − 1 = q/v. Note that
c(G′) = e(G′) + k(G′) − n(G′) and hence, since n(G′) = n(G),
c(G′) = e(G′) + k(G′) − n(G).



Showing this equivalence of Z(G, q, v) and T (G, x, y):

T (G, x, y) = (x − 1)−k(G)(y − 1)−n(G)
∑

G′⊆G

(x − 1)k(G′)(y − 1)e(G′)+k(G′)

= (x − 1)−k(G)(y − 1)−n(G)
∑

G′⊆G

(

q

v

)k(G′)

ve(G′)+k(G′)

= (x − 1)−k(G)(y − 1)−n(G)
∑

G′⊆G

qk(G′)ve(G′)

= (x − 1)−k(G)(y − 1)−n(G)Z(G, q, v) ,

i.e.,

T (G, x, y) = (q/v)−k(G)v−n(G) Z(G, q, v)



As an example, from this relation, for the circuit graph Cn, using
q = (x − 1)(y − 1), so (x − 1) = q/v, we have

Z(Cn, q, v) = (q + v)n + (q − 1)vn = vn
[(

1 +
q

v

)n

+ (xy − x − y)
]

= vn
[

xn − x + y(x − 1)
]

so

T (Cn, x, y) = v−n(q/v)−1Z(Cn, q, v) =
xn − x + y(x − 1)

q/v

=
xn − x

x − 1
+ y =

(

n−1
∑

j=1

xj
)

+ y

so T (C1, x, y) = y, T (C2, x, y) = x + y, etc.

Although the calculation of Z(Cn, q, v) (equivalently, T (Cn, x, y)) is easy, for a
general graph G and for arbitrary values of q and v, the calculation of the Potts/Tutte
polynomial takes a time that grows exponentially with n, as is obvious from the original
expression for Z as a sum over all spin configurations, of which there are qn = en ln q.



Special cases of the Tutte polynomial yield many graph-theoretic functions of interest.
One of these is the chromatic polynomial; for v = −1, i.e., y = 0, since
Z(G, q, v = −1) = P (G, q), one has

P (G, q) = (−q)k(G)(−1)n(G)T (G, x = 1 − q, y = 0)

In a series of papers since the 1990s we have obtained exact calculations of Z(G, q, v)
and P (G, q) on various families of graphs (mainly lattice strips) and have analyzed
quantities such as f({G}, q, v) in the limit as n → ∞ (see refs. at end).

Special valuations of T (G, x, y) count various types of subgraphs of G.

Def. A connected graph that does not contain any cycles (circuits) is a tree graph.

Def. Given a graph G, a spanning subgraph G′ ⊆ G that is a tree graph is a spanning
tree (ST). Denote the number of spanning trees in G as NST (G).

Setting x = 1 in T (G, x, y) restricts the G′s that contribute to those that are
connected, i.e., k(G′) = k(G) = 1. Setting y = 1 restricts the G′s that contribute
to those having no cycles, so that c(G′) = 0.



Hence, setting x = y = 1 picks out G′s that are spanning subgraphs with
c(G′) = 0, i.e., spanning trees. So

T (G, 1, 1) = NST (G)

Def. Given a graph G, a spanning subgraph G′ ⊆ G that has no cycles but may be
disconnected, i.e., consist of more than one component, is called a spanning forest (SF)
of G. Denote the number of spanning forests in G as NSF (G).

One can relax the restriction on connectedness by setting x = 2, so that
(x − 1)k(G′)−k(G) = 1, independent of k(G′). Thus,

T (G, 2, 1) = NSF(G)

One can keep the restriction on connectedness but include G′s with cycles by setting
y = 2; then (y − 1)c(G′) = 1 independent of c(G′). Hence

T (G, 1, 2) = NCSSG(G)

where NCSSG is the number of connected spanning subgraphs of G.



If one sets x = y = 2, then the summand is just 1, so this counts all of the spanning
subgraphs of G. These are enumerated by either including or excluding an edge
between each pair of adjacent vertices, which is a 2-fold choice for each edge, so

T (G, 2, 2) = 2e(G)

Def. The degree ∆ of a vertex in a graph is the number of edges that connect to it. A
graph whose vertices all have the same degree ∆ is termed a ∆-regular graph.

Def. An Archimedean lattice is a ∆-regular tiling of the plane with one or more types
of regular polygons, such that all vertices are equivalent.

A particular Archimedean lattice Λ may be defined by the ordered sequence of regular
polygons that one traverses in a circuit around any vertex:

Λ = (
∏

i

p
ai
i ) ,

where the i’th polygon has pi sides and appears ai times contiguously in the sequence
(it can also occur non-contiguously).

Thus, e.g., the honeycomb (hc), square (sq), and triangular (tri) lattices are denoted as
63, 44, and 36.



For a wide variety of families of n-vertex graphs, including strips of regular lattices, as n → ∞,

NST (G), NSF (G), and NCSSG(G) (as well as NSSG(G)) grow exponentially with n.

Hence, it is of interest to study the exponential growth constants

φ({G}) = lim
n(G)→∞

[NSF (G)]1/n(G) , σ({G}) = lim
n(G)→∞

[NCSSG(G)]1/n(G)

Using our solutions for T (G, x, y) on strips of various lattices, we have obtained quite accurate

determinations of φ(Λ) and σ(Λ) for several Archimedean lattices. (Chang and RS, Int. J. Mod. Phys.

B 34, 2050249 (2020) [arXiv:2002.07150]; Int. J. Mod. Phys. B 35, 2150085 (2021) [arXiv:2012.13468].

Note the monotonic growth of φ and σ with ∆.

Λ ∆(Λ) φ(Λ) σ(Λ)

(4 · 82) 3 2.77931 ± 0.00018 2.3195 ± 0.017

(63) = hc 3 2.80428 ± 0.00050 2.333 ± 0.011

(44) = sq 4 3.687 ± 0.012 3.687 ± 0.012

(3 · 6 · 3 · 6) 4 3.602 ± 0.012 3.74 ± 0.10

(33 · 42) 5 4.530 ± 0.024 5.486 ± 0.041

(32 · 4 · 3 · 4) 5 4.503 ± 0.065 5.465 ± 0.058

(36) = tri 6 5.444 ± 0.051 7.864 ± 0.0028



Chromatic Polynomials and Ground State Entropy of
Potts Antiferromagnet

A quantity of particular interest is the ground state degeneracy, per site, of the Potts
antiferromagnet,

W ({G}, q) = lim
n→∞

P (G, q)1/n

The associated ground state entropy per site is S0({G}, q) = kB ln[W ({G}, q)].

The q-state Potts antiferromagnet at T = 0 is noteworthy as a system that, for a
given type of graph G and sufficiently large q, exhibits nonzero ground state entropy
(per site) S0, or equivalently, W > 1.

There are physical systems that exhibit this type of residual low-temperature entropy,
such as water ice, for which W = 1.51, i.e., the entropy per molecule is
S0/kB = ln W = 0.41 (studied by Linus Pauling).

This is due to the fact that ice is a hydrogen-bonded molecular crystal and there is a
twofold possibility for the H atom in each hydrogen bond, to be closer to one oxygen
atom or the other. Even with the constraint of local electric neutrality, this produces
exponentially many ground state configurations of equal (minimal) energy, and hence a
finite ground state entropy of ice.



Def. A graph G is bipartite if G = Ge ⊕ Go, such that for each vertex in the even (e)
subgraph Ge, all of the adjacent vertices are in the odd subgraph Go and vice versa.

Simple proof of S0 > 0 for the Potts antiferromagnet on a bipartite graph Gbp. for
q > 2. This proof uses a lower bound on P (G, q).

This lower bound is proved as follows. Assign one color to all of the vertices on Ge,
which can be done in any of q ways. Then independently for each vertex on Go, one
can choose the color in any of q − 1 ways. Therefore,

P (Gbp,, q) ≥ q(q − 1)n/2

Hence, for n → ∞, one has W ({G}, q) ≥ √
q − 1 and S0 ≥ (kB/2) ln(q − 1).

So for q > 2, there is nonzero ground state entropy per site.

We have obtained stronger lower bounds on W ({G}, q) and S0({G}, q) for a large
variety of two-dimensional lattices (RS and Tsai, Phys. Rev. E 55, 6791 (1997); Phys.
Rev. E 56, 2733 (1997); Phys. Rev. E 56, 4111 (1997); Chang and RS, Phys. Rev. E
91, 052142 (2015).



Zeros of Chromatic and Potts/Tutte Polynomials and their
Accumulation Sets as n → ∞

Since Z(G, q, v) is a polynomial in q and v, it is of interest to analyze its zeros.

We have analyzed the zeros of Z(G, q, v) in the complex q plane for fixed v, and in
the complex v plane for fixed q for many families of graphs including lattice strips and
necklace graphs.

We study the behavior of these zeros of Z(G, q, v) for G a lattice strip graph in the
limit of infinite length with fixed width, whence n → ∞; similarly with necklace graphs
with infinite circuit length. In this limit, zeros accumulate to form certain curves and
possible line segments, generically denoted as the loci Bq for fixed v and Bv for fixed q.

For a lattice strip of fixed width Ly and arbitrarily great length Lx = m, we obtain
Z(G, q, v) =

∑

j cj(q)(λj)
m, where λj are certain functions of q and v, and cj(q)

are certain coefficients. For generic q, the limit m → ∞ is dominated by the λj of
maximal magnitude.

Zeros occur where there is a degeneracy of two or more dominant λ’s, making
cancellations possible. The condition that two dominant λ’s are equal in magnitude



defines algebraic curves (and possible lines). These are the loci Bq for fixed v and Bv

for fixed q for these lattice strips. Early studies of Bq for v = −1 by Biggs; Read;
Beraha, Kahane, and Weiss.

The number of λ’s depends on Ly and the longitudinal and transverse boundary

conditions (BC). For example, for Z(G, q, v) on cyclic strips, NZ,Ly,λ =
(2Ly

Ly

)

, so

Nλ = 2, 6, 20, 70 for Ly = 1, 2, 3, 4. A subset of these remain for
P (G, q) = Z(G, q, −1): NP,Ly,λ = 2, 4, 10, 26 for Ly = 1, 2, 3, 4. These
numbers increase rapidly as Ly increases. Nevertheless, we were able to carry out exact
calculations of Z and P for a variety of lattice types (square, triangular, honeycomb..)
and widths of strips with arbitrarily great lengths.

The λ’s are roots of algebraic equations with coefficients that are polynomials in q and
v. Although we cannot solve for these in terms of radicals when the degrees of the
algebraic equations are ≥ 5, the combinations of the λm

j powers that occur in
Z(G, q, v) and P (G, q) are symmetric functions of the roots and hence one can
express them (using Newton’s identities) in terms of the polynomial coefficients in these
equations.



example: cyclic strip of square lattice with width Ly = 2 (RS, Physica A 283, 388
(2000)), NZ,λ = 6:

Z([sq, 2×m, cyc], q, v) = (λm
2,0,1+λm

2,0,2)+(q−1)(λm
2,1,1+λm

2,1,1+λm
2,1,1)+(q2−3q+1)λm

2,2,1

where

λ2,0,(1,2) =
1

2

[

v3+4v2+3qv+q2±
(

v6+4v5−2qv4−2q2v3+12v4+16qv3+13q2v2+6q3v+q4
)1/2 ]

λ2,1,1 = v(q + v), λ2,1,1 = v2,

λ2,1,(2,3) =
v

2

[

q + v(v + 4) ±
(

v4 + 4v3 + 12v2 − 2qv2 + 4qv + q2
)1/2 ]

For the chromatic polynomial special case v = −1, NP,λ = 4:

P ([sq, 2 × m, cyc], q) = λm
2,0,1 + (q − 1)(λm

2,1,1 + λm
2,1,2) + (q2 − 3q + 1)λm

2,2,1

where

λ2,0,1 = q2 − 3q + 3, λ2,1,1 = 1 − q, λ2,1,2 = 3 − q, λ2,2,1 = 1



Early study of zeros in v for the special case of the q = 2 Potts (= Ising) model on
the square lattice by Fisher (1965). Zeros in q for the case v = −1 where
Z(G, q, −1) = P (G, q) are called chromatic zeros.

As one crosses a boundary on Bq or Bv, the dominant λ, and hence the resultant f
and/or W function changes non-analytically.

We have calculated Bq and Bv for the n → ∞ limits of many families of graphs,
typically infinite-length strips of regular lattices. The study of these boundaries ties
together graph theory, complex analysis, and algebraic geometry, and also relates these
to statistical physics.

For a long but finite-length strip, many zeros lie close to the asymptotic locus Bq or
locus Bv on which they merge as n → ∞.

If one includes an external magnetic field, then one can also calculate zeros of
Z(G, q, s, v, w) in w = eh. Pioneering study of these by Lee and Yang for the Ising
case q = 2 (1952). We have also studied these zeros for general q and s but restrict
our discussion here to the case of zero external magnetic field.

Illustrative calculation of Bv and Bq for a given limit {G}. Let us consider the family
of circuit graphs Cn. Recall that



Z(Cn, q, v) = (q + v)n + (q − 1)vn = λn
C,0 + (q − 1)λn

C,1, where
λC,0 = q + v and λC,1 = v. In the n → ∞ limit, denoted {C}, one or the other
of these λ’s will generically have a larger magnitude than the other and hence will
dominate the limit, so that the reduced free energy

f = f({C}, q, v) = lim
n→∞

1

n
ln Z(Cn, q, v)

is f = ln(q + v) in the region |q + v| > |v| and the different form f = ln v in the
region |v| > |q + v|. On the boundary curve separating these two regions, f changes
form nonanalytically.

This boundary locus is given by the condition of equality in magnitude of the two λ’s,
namely |q + v| = |v|. Since zeros of Z(Cn, q, v) occur where the two (dominant)
λ’s are equal in magnitude, enabling cancellation, this is also the continuous
accumulation set of zeros of Z(Cn, q, v) as n → ∞.

In the complex v plane, the locus Bv of solutions to the equation |q + v| = |v| is the
infinite vertical line v = −(q/2) + ir, −∞ < r < ∞, which crosses the real-v
axis at v = −q/2.

The solution to |q + v| = |v| in the complex q plane, Bq, is the circle centered at
q = −v with radius |v|. This crosses the real q axis at q = −2v and q = 0. In



particular, for the chromatic polynomial, for which v = −1, this is the circle
|q − 1| = 1 centered at q = 1, passing through q = 0 and q = 2.

We denote the maximal point where Bq intersects the real q axis for a given v as
qc(v) and simply qc for the chromatic zeros, where v = −1. Thus, qc = 2 for this
family of graphs.

Hence, in the chromatic polynomial case, the boundary Bq separates the complex q
plane into two regions, namely the exterior and interior of the circle |q − 1| = 1 (see
figure). Outside, W = q − 1; inside, |W | = 1.

For the (infinite-length) cyclic strip of the square lattice with width Ly = 2, Bq

separates the q plane into four regions (see fig.): (i) in exterior,
W =

√

q2 − 3q + 3; (ii) in innermost region, W = 3 − q; (iii) in the two
complex-conjugate bubble regions, W = q − 1.

Similar but more complicated loci Bq for infinite-length strips of larger widths and other
lattices (see refs. at end).



A general method for calculating Z(G, q, v) for any graph G is the following. Let
G − e denote the graph G with the edge e deleted and let G/e denote the graph G
with the edge e deleted and the two vertices which it connected identified, i.e., G
contracted on the edge e. Z(G, q, v) satisfies the deletion-contraction relation (DCR)

Z(G, q, v) = Z(G − e, q, v) + vZ(G/e, q, v)

This can be seen from the Hamiltonian representation of Z(G, q, v) and is equivalent
to the identity (for e = eij) exp(Kδσiσj

) = 1 + vδσiσj
; there are two possibilities:

the two σ’s on the vertices joined by the edge e are:

• different, in which case Z is the same as if this edge were removed, corresponding to
the 1; or

• the σ’s are the same, which is accounted for by the vδσiσj
term in the above

identity.

We use an iterative application of the DCR and related techniques for our calculations
of Z(G, q, v) on lattice strips of given widths Ly and arbitrarily great lengths Lx.
Lattice types include square, triangular, honeycomb, kagomé, etc.



Types of boundary conditions (BC) for lattice strips are denoted F = free, P = periodic,
T = twisted. The n → ∞ limit is obtained by taking the strip length Lx → ∞.

• free: FBCx, FBCy

• cyclic: PBCx, FBCy

• Möbius: TPBCx, FBCy

• cylindrical: FBCx, PBCy

• toroidal: PBCx, PBCy

• Klein-bottle: TPBCx, PBCy

• GD - self-dual BC for square lattice strips

We mainly focus here on the loci Bq obtained in the infinite-length limit of the strips.
This depends on both the type of lattice and on the boundary conditions in the
transverse and longitudinal directions. We (with Matveev, Tsai, Chang) have calculated
these for square, triangular, honeycomb, and other lattice strips (also work with/by
Brown, Jacobsen, Salas, Sokal); We then discuss work on Bq with Chang and Roeder.

One can also analyze the locus Bv, which separates different regions of the v plane. On
a 2D lattice, these are complex-v extensions of physical phases of the q-state Potts
model (PM, FM, possible AFM).



We have found several general properties of Bq from these calculations of Bq for
infinite-length lattice strips. For example, for cyclic (PBCx, FBCy) and Möbius
(TPCBx, FBCy) strips, general properties include:

• Bq separate the q plane into different regions

• The left-most point where Bq intersects (crosses) the real q axis is at q = 0.

• For strips of the square lattice, the right-most point where Bq crosses the real axis is
qc = 2 for Ly = 1, 2 and increases as the strip width Ly increases, taking the
values qc = 2.34, 2.49, 2.58 for Ly = 3, 4, 5. We conjecture that for cyclic
strips with Ly ≥ 2, (i) qc is a monotonically increasing function of strip width Ly

and (ii) limLy→∞ qc = 3, which would agree with the property that the q = 3
Potts AFM on the (infinite) square lattice has a T = 0 critical point (at v = −1).

• For strips of the triangular lattice, qc is a nondecreasing function of Ly, and we
conjecture that limLy→∞ qc = 4, which would agree with the property that the
q = 4 Potts AFM on the (infinite) triangular lattice has a T = 0 critical point.

• These connections with T = 0 critical points of Potts AFM show interesting link
between singularities in q plane for fixed v and in v plane for fixed q - different
slices of an algebraic variety in C

2 space of (q, v).



For self-dual strips of the square lattice with periodic longitudinal BC,

• Bq again separates the q plane into regions, but

• the left-most point where Bq crosses the real q axis is at q = 1 instead of q = 0.

• qc = 3 for all Ly - this is understandable since these graphs maintain the same
self-duality property as the two-dimensional square lattice, whereas, in contrast, the
cyclic square-lattice strips are not self-dual.

We find that qc does not increase monotonically as a function of width Ly for torus
and Klein-bottle strips.

For most strips with free or cylindrical boundary conditions, Bq consists of
self-conjugate arcs, complex-conjugate pairs of arcs and possible real line segments that
do not separate the q plane into different regions.

Some illustrative figures for regular lattice strips follow. For others, see refs. at end.
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Figure 1: Locus Bq in the q plane for the n → ∞ limit of the circuit graph Cn. Chromatic zeros for Bn with n = 19 are shown for comparison. From R. Shrock
and S.-H. Tsai, Phys. Rev. E55, 5165 (1997).
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Figure 2: Locus Bq in the q plane for the Lx → ∞ limit of the cyclic or Möbius strip of the square lattice with width Ly = 2. Chromatic zeros for the cyclic strip
with Lx = 19 and thus n = 38 vertices are shown for comparison. From R. Shrock and S.-H. Tsai, Phys. Rev. E55, 5165 (1997).
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Figure 3: Locus Bq for the Lx → ∞ limit of the cyclic or Möbius strip of the square lattice with width Ly = 3. Chromatic zeros for the cyclic strip with Lx = 20
and thus n = 60 vertices are shown for comparison. From R. Shrock and S.-H. Tsai, Phys. Rev. E60, 3512 (1999).
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Figure 4: Locus Bq for the Lx → ∞ limit of the strip of the square lattice of width Ly = 4 strip with cyclic or Möbius) boundary conditions. For comparison,
chromatic zeros calculated for the cyclic strip with Lx = 20 and thus n = 80 vertices are shown. From S.-C. Chang and R. Shrock, Physics A290, 402 (2001),
Physica A316, 335 (2002).
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Figure 5: Comparison of loci Bq for the Lx → ∞ limits of the strip of the square lattice with cyclic or Möbius boundary conditions with widths Ly = 3 and Ly = 4.
From S.-C. Chang and R. Shrock, Physica A292, 307 (2001).
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Figure 6: Locus Bq for the Lx → ∞ limit of the cyclic or Möbius strip of the square lattice of width Ly = 5. For comparison, chromatic zeros calculated for the
cyclic strip with Lx = 20 and thus n = 100 vertices are shown. From S.-C. Chang and R. Shrock, Physica A316, 335 (2002).
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Figure 7: Locus Bq for the Lx → ∞ limit of the strip of the square lattice with toroidal or Klein Bottle boundary conditions, of width Ly = 3, with chromatic zeros
for a finite Lx shown for comparison; see N. Biggs and R. Shrock, J. Phys. A (Letts) 32, L489 (1999).
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Figure 8: Locus Bq for the Lx → ∞ limit of the strip of the square lattice with toroidal or Klein bottle boundary conditions, of width Ly = 4, with chromatic zeros
for a finite Lx shown for comparison, from S.-C. Chang and R. Shrock, Physica A292, 307 (2001).
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Figure 9: Locus Bq for the Lx → ∞ limit of GD(2 × Lx). For comparison, chromatic zeros are shown for Lx = 30, i.e., n = 61. For the Lx → ∞ limit of the
wheel graph GD(1 × Lx), B is the circle |q − 2| = 1. This figure and the others on GD strips are from S.-C. Chang and R. Shrock, Physica A301, 301 (2001).
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Figure 10: Locus Bq for the Lx → ∞ limit of GD(3 × Lx). For comparison, chromatic zeros are shown for Lx = 30, i.e., n = 91.
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Figure 11: Locus Bq for the Lx → ∞ limit of GD(4 × Lx). For comparison, chromatic zeros are shown for Lx = 20, n = 81.
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Figure 12: Locus Bq for the Lx → ∞ limit of the square-lattice strip of width Ly = 3 with free boundary conditions, together with chromatic zeros on a finite-Lx

strip shown for comparison. From M. Roček, R. Shrock, and S.-H. Tsai, Physica A252, 505 (1998).
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Figure 13: Boundary Bq for the Lx → ∞ limit of the cyclic or Möbius strip of the triangular lattice with width Ly = 2. Chromatic zeros for the cyclic strip with
Lx = 20 and thus n = 40 vertices are shown for comparison. From R. Shrock and S.-H. Tsai, Physica A275, 429 (2000).
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Figure 14: Locus Bq for the Lx → ∞ limit of the cyclic or Möbius strip of the triangular lattice with width Ly = 3. Chromatic zeros for the cyclic strip with
Lx = 20 and thus n = 60 vertices are shown for comparison. From S.-C. Chang and R. Shrock, Ann. Phys. 290, 124 (2001).
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Figure 15: Locus Bq for the Lx → ∞ limit of the cyclic or Möbius strip of the triangular lattice with width Ly = 5. Chromatic zeros for the cyclic strip with
Lx = 20 and thus n = 100 vertices are shown for comparison. From S.-C. Chang and R. Shrock, Physica A 346, 400 (2005).
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Figure 16: Locus By for q = 2 in the Lx → ∞ limit of the cyclic or Möbius strip of the square lattice with width Ly = 2. From S.-C. Chang and R. Shrock, Physica
A 286, 189 (2000).



Potts Model on Hierarchical Lattices

In the theory of phase transitions and critical phenomena, the renormalization group
(RG) has played a very important role (K. Wilson, M. Fisher, A. Migdal, L. Kadanoff..).

Real-space RG: apply blocking transformation with blocking factor b; calculate effective
Hamiltonian after blocking. Iterating this generates an RG flow in the space of
couplings. Calculate fixed points of this RG mapping (RGFPs).

Two general RGFPs:

• infinite-temp. RGFP, T = ∞, β = 1/(kBT ) = 0, so K = 0,
v = eK − 1 = 0, i.e., y = v + 1 = 1. Here, the spin-spin interaction plays no
role, Boltzmann factor e−βH = 1, and Z(G, q, 0) = qn ∀ G; spins are
completely disordered; paramagnetic (PM) behavior

• zero-temp. RGFP, T = 0, β = ∞ and v = ∞ if J > 0 (FM) or v = −1 if
J < 0 (AFM) case.

• An RGFP can also occur at finite temperature, with associated critical exponents.

An appeal of hierarchical lattice graphs is that one has an exact closed-form RG
transformation.



Examples of hierarchical (lattice) graphs Gm: Sierpinski triangle Sm, Diamond
hierarchical lattice (DHL) graphs, Dm. In each case, one starts with a given graph Gm

and interatively constructs Gm+1 by a specified procedure of adding vertices and edges;
see figure.

Earlier, we studied zeros of Z(Sm, q, v) on m’th iterates of the Sierpinski graph, for
which one has an exact RG transformation for Z (Chang and RS, Phys. Lett. A377,
671 (2013)).

The Diamond hierarchical lattice is of particular interest: many studies of zeros in v
(and w = eh if one includes an external magnetic field), e.g., Gefen, Mandelbrot, and
Aharony, 1979-1984; Griffiths and Kaufman, 1981-1982; Derrida, De Seze, Itzykson,
1983; Bleher, Zalys, 1989; Bleher, Lyubich, 1991; Qin- Z. Yang, 19921; Qiao, Gao-Qiao
2001-2011; Bleher, Lyubich, Roeder, BLR1: Lee-Yang Zeros for DHL..., J. Math. Pure
Appl. 107, 491 (2017) [ arXiv:1009.4691]; BLR2: Lee-Yang-Fisher Zeros for DHL...,J.
Geom. Anal. 30, 777 (2020) [arXiv:1107.5764].

Although there have been studies of zeros in v and w, there has been much less work
on zeros in q, including chromatic zeros (for v = −1) and zeros in q for other values
of v. Some recent work: I. Chio and R. Roeder arXiv:1904.02195 (talk by Chio at this
workshop) and S.-C. Chang, R. Roeder, and RS, J. Math. Phys. 61, 073301 (2020).



Figure 17: First few iterates Dm of the Diamond hierarchical lattice.



The Dm iterate has n(Dm) = (2/3)(4m + 2) and e(Dm) = 4m. Dm with m ≥ 2 has vertices

with degree 2 and 4 and hence is not ∆-regular, but, defining effective ∆eff = 2e(G)/n(G), the

limit limm→∞ ∆eff(Dm) = 3.

Hausdorff dimension dH : each iteration reduces the length of an edge by blocking factor b and produces

N copies, so N = bdH ; here b = 2 and N = 4 so dH(D∞) = 2.

Since Dm is bipartite, for P (Dm, q) it follows that P (Dm, 2) = 2. We calculate

P (Dm, 3) = 2 · 3n(Dm)/2, =⇒ W (D∞, 3) =
√

3, S0(D∞)/kB =
1

2
ln 3

By carrying out the summation over the spins at intermediate vertices at each stage, one finds the exact

RG transformation

Z(Dm+1, q, v) = Z(Dm, q, v′)(q + 2v)22m+1

where Z(D0, q, v) = q(q + v) and

v′ =
v2(2q + 4v + v2)

(q + 2v)2
≡ Fq(v)

or equivalently, with y = v + 1

y′ =

[

q + y2 − 1

q + 2(y − 1)

]2

≡ rq(y)



In the temperature variable v, the fixed points of this RG mapping occur at Fq(v) = v:

• the T = ∞ RGFP at v = v′ = 0

• the T = 0 RGFP: v = ∞ if J > 0 (FM); v = −1 if J < 0 (AFM)

• depending on q, a possible finite-temp. RGFP at value of v given by physical solution of eq.

v3 − 2qv − q2 = 0. e.g., for q = 2 (Ising) case, there is a PM-FM phase transition at

v = vc,PM−FM = 2.3830 (the other two solutions of the cubic form a complex-conjugate pair, not

physical).

For q > 32/27 = 1.185185..., the PM-FM phase transition occurs at

vc,PM−FM = 2−1/3
[

q2 +
√

q3(q − (32/27))
]1/3

+
24/3 q

3
[

q2 +
√

q3(q − (32/27))
]1/3

Hence, vc,PM−FM ∼ q2/3 as q → ∞. This is physically understandable since the larger q is, the more

intrinsic disorder there is in the spin system, and hence the lower the temperature (i.e., the larger

v = eK − 1) that one must cool the system to before one gets a nonzero magnetization.

For q = 32/27, the cubic factorizes as [v − (16/9)][v + (8/9)]2 = 0, so the model has a PM-FM

critical point at v = vc,PM−FM = (4/3)2 and an PM-AFM critical point at

v = vc,PM−AFM = −8/9 (See our paper for discussion of other q values.)



The RG transformation with blocking parameter b takes spin-spin correlation length
ξ → ξ/b and hence RGFPs have ξ = 0 (for T = ∞ and T = 0 fixed points) or
ξ = ∞ (for finite-temp. PM-FM or PM-AFM second-order phase transitions ).

Since RG block-spin transformation reduces ξ, it follows that the T = ∞ and T = 0
RGFPs are stable, while a finite-temp. RGFP is unstable under this transformation (so
the associated locus Bv defined as the accumulation set of zeros in the m → ∞ limit
is the Julia set of the RG transformation v → Fq(v).

Next, we focus on the zeros in the q plane and their accumulation set in the limit
m → ∞, i.e., the locus Bq. We have studied this for both v = −1 (chromatic zeros,
i.e., Potts AFM at T = 0)), v ∈ (−1, 0] (Potts AFM with temp. T > 0), and
v ≥ 0 (Potts FM).

Figures show region diagrams depending on behavior of F m
q (v) and q-plane zeros for

Zr(D5, q, v):

• regions in q such that F m
q (−1) → 0 are colored white

• regions in q such that F m
q (−1) → ∞ are colored blue

• regions in q not in either of these are colored black



• Similarly to the way the locus Bq separated regions with different behavior for the
infinite-length strip graphs, here the locus Bq consists of points on the boundaries
between white, blue, and black regions.

Some properties of Bq (more sophisticated discussion using complex dynamics by R.
Roeder in CRS paper):

• The left-most point where Bq intersects the real q axis is at q = 0

• The maximal (right-most) value at which Bq crosses the real axis is at qc = 3.
(However, P (Dm, 3) is nonzero, equal to 2 · 3n(Dm)/2.)

• The minimal nonzero value of q at which Bq crosses the real axis is at
q = 32/27 = 1.185185... (although 1 < q ≤ 32/27 is a chromatic zero-free
region for any P (G, q) [Jackson, Thomassen])

• Moving left from qc, Bq crosses the real axis at an infinite sequence of points given
by solutions to F m

q (−1) = Fq(−1), m ≥ 2, starting with a solution to

F 2
q (−1) = Fq(−1), q = 1.638897..., (unique real root of the equation

q3 − 5q2 + 11q − 9 = 0), converging to q = 32/27 from above.



Figure 18: Locus Bq for D∞ DHL lattice and v = −1 (R. Roeder), together with chromatic zeros of Pr(D5, q). In both panels, the real and imaginary intervals are
−1 < Re(q) < 3.5 and −2.5 < Im(q) < 2.5.



We proceed to discuss Bq for v > −1. As v increases in the interval −1 < v < 0,
the locus Bq shrinks, and more of the interior is black. As v → 0−, Bq degenerates to
a single point q = 0, since Z(G, q, 0) = qn for any G.

For v > 0, Bq crosses the real axis at only two points.

As v increases from 0 through positive real values (Potts ferromagnet), the black and
white regions in the interior of the outermost part of Bq are reduced, with the blue
regions becoming dominant.

For large real positive v (Potts ferromagnet at low temperature), Bq becomes more like
a roughly circular curve, with radius |q| ∼ v3/2, corresponding to the solution for
vc,PM−FM above, and the interior of Bq becomes blue.



Figure 19: Locus Bq for D∞ with v = −0.5, together with zeros of Zr(D5, q, −0.5). In both panels, the real and imaginary intervals are −0.5 < Re(q) < 1.7
and −1.2 < Im(q) < 1.2. This and other figs. from CRS.



Figure 20: Locus Bq for D∞ with v = 2, together with zeros of Zr(D5, q, 2). In both panels, the real and imaginary intervals are −6 < Re(q) < 3 and
−6 < Im(q) < 6.

Figure 21: Locus Bq for D∞ with v = 99 (i.e., y = 100, together with zeros of Zr(D5, q, 99). In both panels, the real and imaginary intervals are −1200 <
Re(q) < 1000 and −1100 < Im(q) < 1100.



Some Open Problems and Directions for Further Research

There are many open problems and directions for further research, e.g.,

1. Further calculations of Z(G, q, v) and P (G, q) for various families of graphs, with
analysis of zeros and the accumulation sets Bv at fixed q and Bq at fixed v, as well
as analogous loci if one imposes a functional relation ω(v, q) = 0.

2. We have found that, for infinite-length lattice strips with arbitrary transverse
boundary conditions, a sufficient condition for Bq to separate the complex q plane
into regions is that the longitudinal b.c. should be periodic or twisted periodic
(cyclic, Möbius, toroidal, or Klein-bottle). Prove this in general.

3. In all of the infinite-length limits of families of graphs with cyclic boundary
conditions, we have found that qc is a nondecreasing function of Ly. Prove this in
general. Note that we have shown that this monotonicity does not hold for
infinite-length limits of graphs with toroidal or Klein-bottle boundary conditions.

4. For the infinite-length limits of families of graphs for which Bq does separate the
complex q plane into several regions, give a precise characterization of the number
of regions. This is related to the Hilbert 16’th problem, to determine the topology of
solutions to algebraic equations. In specific cases, e.g., m → ∞ limit of a necklace
graph (RS and Tsai, J. Phys. A 32, 5053 (1999)) the number of disjoint curves and
associated regions that we find is much less than the Harnack upper bound.



5. Analyze Bv and Bw for DHL with values of q other than the Ising case q = 2.

6. Further study of Bq for DHL with v > −1, including both the J < 0 regime
−1 < v ≤ 0 and the J > 0 regime, v ≥ 0.

7. Study the loci Bq and Bv for other hierarchical lattices.



Conclusions

• Interesting connections between the Potts model in statistical mechanics and the
Tutte polynomial.

• T = 0 Potts antiferromagnet partition function is identical to the chromatic
polynomial relevant for graph coloring.

• Worthwhile to study pattern of zeros of Z(G, q, v) in v plane for fixed q and in q
plane for fixed v. For infinite-length limits of strip graphs, these zeros merge to form
curves. At points where these cross the real q or v axes, f and W functions change
analytic form.

• Connection with ground entropy of zero-temperature Potts AFM

• We have calculated these curves for several infinite-length limits of lattice strips for
various lattice types, widths, and boundary conditions.

• Valuable insights from study (with S.-C. Chang and R. Roeder) of Bq on the
Diamond Hierarchical Lattice.

• Thus, study of the properties of the Potts/Tutte and chromatic polynomials for
these families of graphs, including the asymptotic behavior as n → ∞, involves
interesting confluence of physics and mathematics.

• Many open questions that could be investigated in future work



Thank you to Roland Roeder for a very instructive collaboration and for inviting me to
give this talk.

Thank you also to the audience.
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