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Statistical mechanics

Statistical mechanics

Phase fransitions: Failure of analytic dependence. Hamiltonian
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IsiNGg model Neighbor exclusion model

ifX={v,vjecEandw, =w, =1
it X = {vh
otherwise.

X ={vv}eE
if X = {v)
otherwise.

Partition function = Independence polynomial;

= explh 0, o

Zg is a LAURENT polynomial in 4 := exp(—h).
Z(2) may vanish outside the unit circle.

Theorem (LEE-YANG, 1952)
Assume J > 0. Then all zeros of Zg(A) are in the unif circle.




Regular trees

Bonsai Diurno - estado 11, by Jorge MARTINEZ GARCIA 2009.

Phase transition
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Regular trees

Integer > 2.

d — regular tree of depth k
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Phase transition
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Theorem (RL, SOMBRA)
The pressure function 2 is real analytic
on (0, +00) \ {Ace}, and infinitely differentiable af Ac.
The limit holds as electrostatic potentials on C, and for
every a > 0:
A2l
lim
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Plan:
Recursive relation and complex dynamics;

Speed of converge towards the thermodynamic limit;
Zero free region and pointwise dimension;

Smoothness of the pressure function.

Support of AZ for

= 2, by Nuria FAGELLA.
Support of A for
d = 4, by Bernat ESPIGULE.

Speed of converge towards the thermodynamic limit

Recursive relation and complex dynamics
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SR, and k > 3,
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Critical points: 0 and oo;
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Speed of converge towards the thermodynamic limit

1
Taxl

exists as electrostatic potentials on C.

2 = lim log | Z7,,|-
Equidistribtion & k=00

Zero free region and pointwise dimension

Proof.
: C - [0, 1] Lipscrrrz, such that:
Liplg) ~ %
¢ =0 on Bli,20);
¢ =10n Blic.p).

Quantitative equidistribution = For k > 3 so that k ~
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Zero free region and pointwise dimension

AtA= A
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has Co : as a fixed point of multiplier —1;
.0 = Go.
Proposition
There is C' > 0 such that for k >
C
NaxNB ().,.,

Approsimat Exsou coortnses
Corollary

There is k € (0,1), such that for every small p > 0

it (Blker, p)) <

Smoothness of the pressure function

Proposition
probability measure on C such that

log #lB(0,
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and for some 1> 0 is supporfed on

{z € C:5(z) > MR(z)).
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is infinitely differentiable on R.




Smoothness of the pressure function Smoothness of the pressure function
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Divide and conquer:
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Smoothness of the pressure function




