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Overview

The Ising model on bounded-degree graphs (no external field)

A novel zero-free region for the Ising model

Hardness of approximation in the complex plane

Connection between zeros and hardness in the Ising model
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Brackground: the Ising Model

Parameters: 3 € C (edge interaction), A € C (external field), graph G = (V, E).
Configurations: o : V — {0, 1}.

Probability of a configuration o: P(0) oc w(o) = @)\l

where m(c) is the number of monochromatic edges in o.

Ising partition function: Zy,,(G; 5, \) w(a
)\3ﬁ3

= ()\3 +1)8° + 3(/\2 +A)p

e Real 8 > 1: Ferromagnetic (prefer many monochromatic edges)
e Real g € (0, 1): Antiferromagnetic (prefer few monochromatic edges)



Computing the partition function

#ISING(8, A): On input G = (V, E), compute the value Zin(G; 5, A).

Exact computation of Ziine (G; 8, ) is #P-hard for almost every 5, A € C\{0}

[Dyer, Greenhill ‘00; Bulatov, Grohe ’'05; Goldberg, Grohe, Jerrum, Thurley ’'08;
Cai, Chen, Lu "11].

Problem: Can we approximate #ISING(5, \)?

e FPTAS for real-valued Z(G):
For ¢ > 0, compute Z in time poly(size(G), 1/¢) s.t. Z = ¢°Z(G) for some
z € [—¢,¢].

e FPTAS for complex-valued Z(G):

For ¢ > 0, compute Z in time poly(size(G), 1/¢) s.t. Z = ¢*Z(G) for some
z€ Cwith|7] <e.



Why complex parameters?

[Barvinok '17]

Absence of zeros

Approximation algorithm for Z(G; A),
in the complex plane

even for real values of A

Main Idea:

e Assume Z(G; A) # 0 for all A in a “region” around the origin.
e Taylor series expansion of log Z(G; \) converges.
e Compute truncated Taylor series.

Answering the question:

@ [Patel-Regts '17] On bounded-degree graphs this gives poly-time
algorithms.

® Complex zeros vs approximability: how critical is the absence of zeros?

® Connections with classical statistical physics/combinatorics results:
phase transitions, quantum computation (IQP circuits), exact counting.



Approx. algorithms for the independent set polynomial

Zero-free regions for A = 10.

A := maximum degree of input
graph G.

Notation:

Ze(N) = > AL

I independent set

Cardioid:
A ={A:lzl <1/(A=1), x=z/(1 —2)2"}.

Zero-free regions:

[Patel, Regts '16;

Harvey, Srivastava, Vondréak '16]:

FPTAS when |A| < A*(A) = (A — 1)271/A%,

[Peters, Regts '19]: FPTAS in the strip around
[0, \.), where \. = (A — 1)271/(A —2)2.

[Peters, Regts '19]: FPTAS when

A <epen~ and |arg())| <

[eEmaTrey i

[Bencs, Csikvari '18]: FPTAS when Re(A\) > 0
and |A| < 6a ~ 122,



Hardness for the independent set polynomial

Notation:

Zg(\) = >l

I independent set

Cardioid:
Aa={X:lzf <1/(A=1),A=z/(1-2)%""}.

[Bezakova, Galanis, Goldberg, Stefankovi¢ '18]:
Approximation problem is #P-hard for non-real
A ¢ A on bipartite graphs.

[Buys ’19, Rivera-Leterier ’19]:
There exist A € Int(Aa) and G with max.
10. degree A such that Z(A) = 0.

Zero-free regions for A =

A = maximum degree of input [d& Boer, Buys, Guerini, Peters, Regts "21]:

graph G. Zeros = #P-Hardness of approximation.



Approximation algorithms for Ising
Notation:
A maximum degree of input graph G.

B. == 25 and (1/8., B.) is the uniqueness region of the A-regular infinite tree
(more on £, later).

Setting 1: Ferromagnetic Ising (real 5 > 1 and A € C):
Lee-Yang zeros: zeros are on the unit circle |A\| = 1.
[Liu, Sinclair, Srivastava '19]: FPTAS when 5 > 1 and |)\| # L.

[Peters, Regts "20]: FPTAS when 8 < 3. and ) is on the “zero-free” arc of the
unit circle.

[Buys, Galanis Patel, Regts '20]: #P-hard when:
e 3> f.and A # *1;
e 3 < B.and X is not on the “zero-free” arc of the unit circle.

This setting is well understood.



Approximation algorithms for Ising

Setting 2: No external field (3 € C and A = 1):
[Liu-Sinclair-Srivastava '19]: in a strip around (1/8,, 8.).

® [Barvinok ‘17, Mann-Bremner '19]: FPTAS in the disc |%| < op ~ 238
[Barvinok-Barvinok 21°7: in a “diamond” around some of (1/8,, 5.).

Hardness and zeros on non-real edge interactions: nothing known outside
these regions.

Im(3)
an
.‘0" ta, )
H 1 = Re(B)
o = = o—>
—1 0 1/ﬂc "‘ ’: Bc
....II“’

Zero-free regions for A = 3.

This talk: [Galanis, Goldberg, Herrera-Poyatos '21] new work on this case.



A novel zero-free region

Theorem 1: Let A >3 and ea = tan(4(§71)
|

Then Ziine (G; 8) # 0 for all 3 € C with |

< ea and all graphs G with
maximum degree A.

51
B+1

Re(f)
Be

Zero-free regions for A = 3. New region is in large circle.



Comparison with Barvinok-Mann-Bremner

® [Barvinok 17, Mann-Bremner '19]: FPTAS in the disc |%| < Oa.

op = max{sin (%) cos (A%) 0<a< ;Z}

® Our region: FPTAS in the disc |%| <en.

0.87

0.6 | e Limit of 65(A — 1):

0.561...
0.4’/..@"' |

® Limit of ea(A — 1):

02 —o—ca(A—1) || m/4 =0.785...
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Comparison with Barvinok-Barvinok and Liu-Sinclair-Srivastava
Ea := maximal zero-free region containing 1.

[Liu-Sinclair-Srivastava '19]:

Forany 3 € (1/8., B:) = (852, z25), there exists a § > 0 such that
B(j,0) C €a.
Proof is not constructive, § is unknown.

[Barvinok-Barvinok 217:

1— 2
Let0 < ¢ < 1. If |Re(a)| < T& and |Im(a)| < o then ¢** € En.

10A°
Multivariate Ising, can include field close to 1.

® QOur region: If \5+1| <ea

Fm(ﬁ)

Re(p)

o—

0

1/B u

Zero-free regions for A = 10. These regions are incomparable for general A.



Computational problems

Fix e C,A>3,K>1real pe (0,7/2).

ISINGNORM(f3, A, K)

Instance: A (multi)graph G yvith maximum degree at most A.
Output: A rational number N such that

N/K < |Zising (G B)| < KN.

ISINGARG(3, A, p)

Instance: A (multi)graph G with maximum degree at most A.
Output: A rational A such that |A — a| < p for some a € arg(Zing(G; 3)), Where
arg(z) = {a € R : exp(ai) = z/[z[}.

Remark: we can amplify any constant approximation into an FPTAS.

Corollary: ISINGNORM(3, A, 1.01) and ISINGARG(3, A, 7/3) have a poly-time
algorithm when | 21| < ea ~ 285

A—-1



Our hardness result

Theorem 2: Let A >3 and g € Cy \ (RU {i, —i}) with
ISINGNORM(5, A, 1.01) and ISINGARG(S, A, w/3) are #-P- hard

Remark: There are zeros j, inside this region that imply hardness.
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Results for A = 3.



The tree of self-avoiding walks
Pinning: conditioning on o(v) = j.

SAW tree: Self-avoiding walks starting at
vertex a. Leaves for cycles are added and
pinned.

AGH= Y, 2

osto(v)=j

Z (G;
R(G,v;B8) = ZZ)((Gg))

a
b (4 d
d c , Qr

Idea: reducing the study of Z on
€ fiLa f ¢
f e d

[(

c

Example 1:

graphs to its study on trees.

[

[Weitz '06]: R(G,a; B) = R(T, a; j5).

] d

[Liu, Sinclair, Srivastava ’'19]:

a o Zising(G: B) divides Zing (T B).
d bO;(g)\.d ® leing(T; ﬂ) # 0= leing(G; 5) 7é 0.

d




Trees and multivariate complex dynamics

z+1
hﬁ(z) ::ﬁ 9 F,Bk Zlv“’vzk Hhﬁ Zj

G})\ B+z
b X d e If T is a node,
a3 O, Of 1 if vertex unpinned;
R(T,v; B) = { oo if vertex pinned to 1;
a € fla ! € . .
é 0 if vertex pinned to 0.
‘f e d d
i i o (T1,v1),...,(Tq,vq): trees hanging from (7, a),

ri =R(T;,v;; B). Then R(T,v; B) = Faa(ri,. .., rq)-

Finding zero-free regions: prove Fg is closed on S C CU {oo} with —1 ¢ S.

Zising(T; B) = Z(T, v; B) (1 + ;g:g» =Z%T,v; B) (1 + R(T,v; 3)) # 0



Proof-sketch of zero-free region

Our region: A >3 and |ﬁ+1| < ea = tan (g

. 1
Reminder: hs(z) == 5;:2 , Fpu(zi,- -5 2) Hhﬁ (%)-

hg(z) =1 (B—1)(z—1)
hs(z)+1  (B+1)(z+1)

Proof - Induction on height of tree - S = {z € C : Re(z) > 0} U {0}
Claim 1: Re(z) > 0 if and only if |Z | <1.

Observation:

Claim 2: 1f Re(z) > 0, then [725—1] < ea.

Claim 3: If |277| < ea, then Arg(y) € | - 57—y 32T |-

Claim 4: If Re(z;) > 0 for all j, then Re(Fg (z1,- - .,z)) > 0. |



The importance of pinnings in the Ising model

Trees with no pinnings are trivial in the Ising model (with no external field)!

T tree with no pinnings:
e R(T,v; 3) = 1 for all 3;
hd ZIsing(T; B) =0 if and Only if b =—1.

[Bencs ’18] Updated divisibility result for the independent set polynomial
T' < subtree of SAW tree without pinnings,
Zs(\) divides Zr: (A).

No such result can exist for the Ising model!

Trees without pinnings capture ratios / implementations in the Hard-core model.



The ideas of Beziakova-Galanis-Goldberg-Stefankovi¢

Zero-free regions for
A = 10.

Independent set polynomial:

Ze(N)= ) Al

I independent set

Easiness: Ratios (with pinnings) bounded away
from —1.

Hardness: Ratios (no pinnings) dense around —1.

Cardioid:

A ={X:zl <1/(A=1),A=z/(1 —2)*"}.
Implementation result:

A€ Ay = {R(T,v;\): T tree max. deg. A} is
dense in the complex plane.

Proof idea : Complex dynamics on univariate tree

recurrence f(z) = 15w



Implementations when there is no external field

Definition idea: Let §;, 5, € C? and let H be a graph.
e H 31-implements (3, with terminals s, € V(H) if (H, s, t) with edge interaction
51 “behaves” as an edge with edge interaction ;.

interaction 3,

Br = Z,/ (H; B1)/ 2y} (H; )
e H (A, 31)-implements 3, € C:
i B
o H hlas maX|lmum degree at most A, ° O O o
o distinct vertices s and r of degree 1.

20



A recursive gadget

_ Bx+1

x+2 x/3?
=T s =) =

h S e e e
a(%) 1+ 2x8 + B2
Ising program: Sequence ay, a1, . . ., starting with ay = 8 and satisfying
ar = gp(aj,, - -a,-k,[,k) fork > 1,
where di € [d] and iy 1, ..., ikq € {0,...,k—1}.

Ajy

aik,dk

e Ising program generates a; < 3H, that (A, 8)-implements ;.

Study the recurrence f(z) = gs(z“).

21



Complex dynamics: implementing the complex plane

Ising model
o f(z) = gs(z")
o Starting value: 3 (one edge)

o Fixed point w: 1

o w repelling when |2=1| > —L

B+1 A—1"

gs(x) = hg(hs(x))

_x+2B8+ x?

12X+ B2
Independent set polynomial

f@@) =1+

o Starting value: A (vertex unpinned)

o Fixed point w: choose fixed point
with smallest norm.

o w repelling when A & Aa.

Observation: f(z) = g(z?) where g is Mobius map.

Strategy resembles [BGGS '18].

22



Complex dynamics: implementing the complex plane

Steps in the proof

@ Get arbitrary close to w (program-approximable fixed point). Specific to g.

B0 0
Ising: Implements g"(3), which converges to 1 or —1.
® Implement dense subset of open set U containing w. General proof.

©® When w is repelling,
s (w)=C\E.
n=0
Use this to implement complex plane. General proof.

Implementation result: We can implement a dense subset of C.

23



Zeros imply hardness?

Let 8 € Cy \ (RU {i, —i}).
Lemma 6: (A, 3) implements —1 = hardness of approximation.

Idea: use zeros to (A, 8)-implement —1. Implementing —1:

”/(H )/ st’( )771

Assumptions:
o leing(H; B) =0

o max{deg(s),deg(t)} <A -1 g i ° 0 ’ 0

Example: Graph G with max. degree A = 3.
701G x) = (1 +x* +2x°)?
ZING;x) = P2 +x+x)?

Zero  inside disc: | m‘ <

ﬁ
B = 0.396608... + 0.917988...i.

24



Conjecture and bottleneck

Corollary:

Zising(H; 8) = 0 for H with . ISINGNORM(3, A, 1.01) and
maximum degree A — 1 ISINGARG(, A, 7/3) are #P-hard.
Proof idea:

Choose H with minimum number of edges and Implement —1.

Conjecture:

Zising(H; 8) = 0 for H with . ISINGNORM(S, A, 1.01) and
maximum degree A ISINGARG(S, A, 7/3) are #P-hard.
Bottleneck:

Our approach needs B B

o max{deg(s),deg()} <A -1

Independent set polynomial: we can use trees without pinnings!

25



Open problems

@ Maximal zero-free region containing (1/5., 5.)

@® [f a tree with pinnings has ratio r, can we (A, 5)-implement r (without

pinnings)?

® Hardness when ‘/3+1| > <

now| 1|>

7a7)

® Zero on graph with maximum degree A — hardness?

suENy
o** e,

Re(p)

“
*
Taggpunt®

0 .
. .
LTI LA

Results for A = 3.
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