The complexity of approximating the complex-valued Ising model on bounded degree graphs

Andreas Galanis, Leslie Ann Goldberg, Andrés Herrera Poyatos

10-11 June 2021

Workshop on

Interplay between statistical mechanics, graph theory, computational complexity and holomorphic dynamics

Overview

- The Ising model on bounded-degree graphs (no external field)
- A novel zero-free region for the Ising model
- Hardness of approximation in the complex plane
- Connection between zeros and hardness in the Ising model

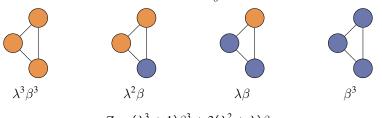
Galanis, Goldberg, Herrera-Poyatos, *The complexity of approximating the complex-valued Ising model on bounded degree graphs*, arXiv:2105.00287, 2021.

Brackground: the Ising Model

Parameters: $\beta \in \mathbb{C}$ (edge interaction), $\lambda \in \mathbb{C}$ (external field), graph G = (V, E). Configurations: $\sigma : V \to \{0, 1\}$.

Probability of a configuration σ : $\mathbb{P}(\sigma) \propto w(\sigma) = \beta^{m(\sigma)} \lambda^{|\sigma|}$ where $m(\sigma)$ is the number of monochromatic edges in σ .

Ising partition function: $Z_{\text{Ising}}(G; \beta, \lambda) = \sum w(\sigma)$



 $Z = (\lambda^3 + 1)\beta^3 + 3(\lambda^2 + \lambda)\beta$

Real β > 1: Ferromagnetic (prefer many monochromatic edges)

• Real $\beta \in (0, 1)$: Antiferromagnetic (prefer few monochromatic edges)

Computing the partition function

#ISING(β , λ): On input G = (V, E), compute the value $Z_{\text{Ising}}(G; \beta, \lambda)$.

Exact computation of $Z_{\text{Ising}}(G; \beta, \lambda)$ is **#P-hard** for almost every $\beta, \lambda \in \mathbb{C} \setminus \{0\}$ [Dyer, Greenhill '00; Bulatov, Grohe '05; Goldberg, Grohe, Jerrum, Thurley '08; Cai, Chen, Lu '11].

Problem: Can we approximate $\#ISING(\beta, \lambda)$?

- FPTAS for real-valued Z(G):
 For ε > 0, compute in time poly(size(G), 1/ε) s.t. Â = e^zZ(G) for some z ∈ [-ε, ε].
- FPTAS for complex-valued Z(G):

For $\varepsilon > 0$, compute \hat{Z} in time poly(size(*G*), $1/\varepsilon$) s.t. $\hat{Z} = e^{z}Z(G)$ for some $z \in \mathbb{C}$ with $|z| \le \varepsilon$.

Why complex parameters?

[Barvinok '17]	
$\begin{array}{ll} \mbox{Absence of zeros} \\ \mbox{in the complex plane} \end{array} \Rightarrow$	Approximation algorithm for $Z(G; \lambda)$, even for real values of λ

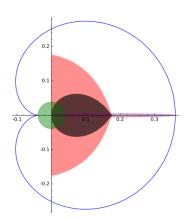
Main Idea:

- Assume $Z(G; \lambda) \neq 0$ for all λ in a "region" around the origin.
- Taylor series expansion of $\log Z(G; \lambda)$ converges.
- Compute truncated Taylor series.

Answering the question:

- [Patel-Regts '17] On bounded-degree graphs this gives poly-time algorithms.
- 2 Complex zeros vs approximability: how critical is the absence of zeros?
- Onnections with classical statistical physics/combinatorics results: phase transitions, quantum computation (IQP circuits), exact counting.

Approx. algorithms for the independent set polynomial



Zero-free regions for $\Delta = 10$.

 $\Delta := \text{maximum degree of input} \\ \text{graph } G.$

Notation:

$$Z_G(\lambda) = \sum_{I ext{ independent set}} \lambda^{|I|}.$$

Cardioid: $\Lambda_{\Delta} = \{\lambda : |z| \le 1/(\Delta - 1), \lambda = z/(1 - z)^{\Delta - 1}\}.$

Zero-free regions:

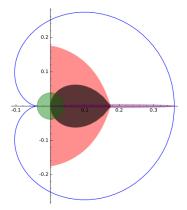
[Patel, Regts '16; Harvey, Srivastava, Vondrák '16]: FPTAS when $|\lambda| < \lambda^*(\Delta) = (\Delta - 1)^{\Delta - 1} / \Delta^{\Delta}$.

[Peters, Regts '19]: FPTAS in the strip around $[0, \lambda_c)$, where $\lambda_c = (\Delta - 1)^{\Delta - 1} / (\Delta - 2)^{\Delta}$.

[Peters, Regts '19]: FPTAS when $|\lambda| \leq \varepsilon_{\Delta,\epsilon} \sim \frac{\pi}{(2+\epsilon)(\Delta-1)}$ and $|\arg(\lambda)| \leq \frac{\varepsilon\pi}{2(2+\varepsilon)}$.

[Bencs, Csikvári '18]: FPTAS when $\operatorname{Re}(\lambda) \geq 0$ and $|\lambda| < \delta_{\Delta} \sim \frac{1.374}{\Delta}$.

Hardness for the independent set polynomial



Zero-free regions for $\Delta = 10$.

 $\Delta := \text{maximum degree of input} \\ \text{graph } G.$

Notation:

$$Z_G(\lambda) = \sum_{I \text{ independent set}} \lambda^{|I|}.$$

Cardioid: $\Lambda_{\Delta} = \{\lambda : |z| \le 1/(\Delta - 1), \lambda = z/(1 - z)^{\Delta - 1}\}.$

[Bezáková, Galanis, Goldberg, Štefankovič '18]: Approximation problem is **#P-hard** for non-real $\lambda \notin \Lambda_{\Delta}$ on bipartite graphs.

[Buys '19, Rivera-Leterier '19]: There exist $\lambda \in Int(\Lambda_{\Delta})$ and G with max. degree Δ such that $Z_G(\lambda) = 0$.

[de Boer, Buys, Guerini, Peters, Regts '21]: Zeros \Rightarrow #P-Hardness of approximation.

Approximation algorithms for Ising

Notation:

 Δ maximum degree of input graph G.

 $\beta_c := \frac{\Delta}{\Delta - 2}$ and $(1/\beta_c, \beta_c)$ is the uniqueness region of the Δ -regular infinite tree (more on β_c later).

Setting 1: Ferromagnetic Ising (real $\beta > 1$ and $\lambda \in \mathbb{C}$):

Lee-Yang zeros: zeros are on the unit circle $|\lambda| = 1$.

[Liu, Sinclair, Srivastava '19]: FPTAS when $\beta > 1$ and $|\lambda| \neq 1$.

[Peters, Regts '20]: FPTAS when $\beta < \beta_c$ and λ is on the "zero-free" arc of the unit circle.

[Buys, Galanis Patel, Regts '20]: #P-hard when:

- $\beta \geq \beta_c$ and $\lambda \neq \pm 1$;
- $\beta < \beta_c$ and λ is not on the "zero-free" arc of the unit circle.

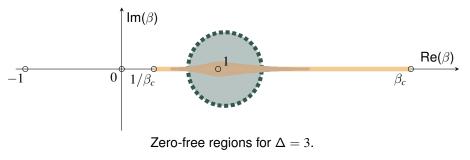
This setting is well understood.

Approximation algorithms for Ising

Setting 2: No external field ($\beta \in \mathbb{C}$ and $\lambda = 1$):

- [Liu-Sinclair-Srivastava '19]: FPTAS in a strip around $(1/\beta_c, \beta_c)$.
- [Barvinok '17, Mann-Bremner '19]: FPTAS in the disc $|\frac{\beta-1}{\beta+1}| \leq \delta_{\Delta} \sim \frac{0.561}{\Delta}$.
- [Barvinok-Barvinok 21']: FPTAS in a "diamond" around some of $(1/\beta_c, \beta_c)$.

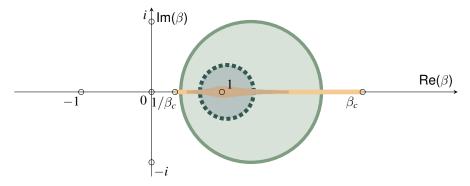
Hardness and zeros on non-real edge interactions: nothing known outside these regions.



This talk: [Galanis, Goldberg, Herrera-Poyatos '21] new work on this case.

A novel zero-free region

Theorem 1: Let $\Delta \geq 3$ and $\varepsilon_{\Delta} = \tan(\frac{\pi}{4(\Delta-1)}) \in (0, 1)$. Then $Z_{\text{Ising}}(G; \beta) \neq 0$ for all $\beta \in \mathbb{C}$ with $|\frac{\beta-1}{\beta+1}| \leq \varepsilon_{\Delta}$ and all graphs *G* with maximum degree Δ .



Zero-free regions for $\Delta = 3$. New region is in large circle.

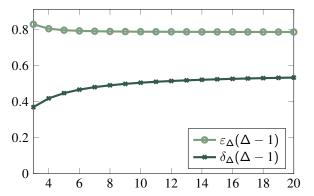
Comparison with Barvinok-Mann-Bremner

• [Barvinok '17, Mann-Bremner '19]: FPTAS in the disc $|\frac{\beta-1}{\beta+1}| \leq \delta_{\Delta}$.

$$\delta_{\Delta} = \max\left\{\sin\left(\frac{\alpha}{2}\right)\cos\left(\Delta\frac{\alpha}{2}\right): 0 < \alpha < \frac{2\pi}{3\Delta}\right\}$$

• Our region: FPTAS in the disc $|\frac{\beta-1}{\beta+1}| \leq \varepsilon_{\Delta}$.

$$\varepsilon_{\Delta} = an\left(rac{\pi}{4(\Delta-1)}
ight)$$



Limit of δ_Δ(Δ − 1):
 0.561...

• Limit of
$$\varepsilon_{\Delta}(\Delta - 1)$$
:
 $\pi/4 = 0.785...$

Comparison with Barvinok-Barvinok and Liu-Sinclair-Srivastava

 $\mathcal{E}_{\Delta} :=$ maximal zero-free region containing 1.

• [Liu-Sinclair-Srivastava '19]: For any $\beta \in (1/\beta_c, \beta_c) = (\frac{\Delta-2}{\Delta}, \frac{\Delta}{\Delta-2})$, there exists a $\delta > 0$ such that $B(\beta, \delta) \subseteq \mathcal{E}_{\Delta}$. Proof is not constructive, δ is unknown.

• [Barvinok-Barvinok 21']: Let $0 < \delta < 1$. If $|\operatorname{Re}(a)| < \frac{1-\delta}{\Delta}$ and $|\operatorname{Im}(a)| \le \frac{\delta^2}{10\Delta}$, then $e^{2a} \in \mathcal{E}_{\Delta}$. Multivariate Ising, can include field close to 1.

• Our region: If
$$|\frac{\beta-1}{\beta+1}| \leq \varepsilon_{\Delta} \sim \frac{0.785...}{\Delta-1}$$
, then $\beta \in \mathcal{E}_{\Delta}$.

Zero-free regions for $\Delta = 10$. These regions are incomparable for general Δ .

Computational problems

Fix $\beta \in \mathbb{C}$, $\Delta \geq 3$, K > 1 real, $\rho \in (0, \pi/2)$.

$\mathsf{ISINGNORM}(\beta, \Delta, K)$

Instance: A (multi)graph *G* with maximum degree at most Δ . **Output:** A rational number \hat{N} such that

 $\hat{N}/K \leq |Z_{\text{Ising}}(G;\beta)| \leq K\hat{N}.$

ISINGARG(β, Δ, ρ)

Instance: A (multi)graph *G* with maximum degree at most Δ . **Output:** A rational \hat{A} such that $|\hat{A} - a| \le \rho$ for some $a \in \arg(Z_{\text{Ising}}(G; \beta))$, where $\arg(z) = \{a \in \mathbb{R} : \exp(ai) = z/|z|\}$.

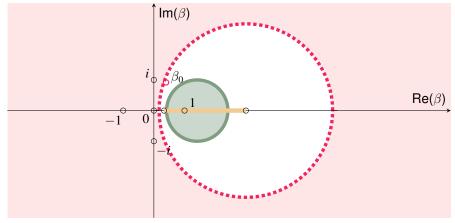
Remark: we can amplify any constant approximation into an FPTAS.

Corollary: ISINGNORM(β , Δ , 1.01) and ISINGARG(β , Δ , $\pi/3$) have a poly-time algorithm when $|\frac{\beta-1}{\beta+1}| < \varepsilon_{\Delta} \sim \frac{0.785...}{\Delta-1}$.

Our hardness result

Theorem 2: Let $\Delta \geq 3$ and $\beta \in \mathbb{C}_{\mathbb{A}} \setminus (\mathbb{R} \cup \{i, -i\})$ with $\left|\frac{\beta-1}{\beta+1}\right| > \frac{1}{\sqrt{\Delta-1}}$. Then ISINGNORM $(\beta, \Delta, 1.01)$ and ISINGARG $(\beta, \Delta, \pi/3)$ are #P-hard.

Remark: There are zeros β_0 inside this region that imply hardness.

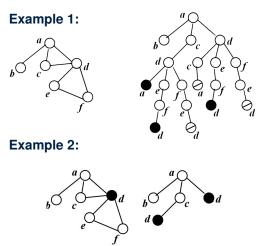


Results for $\Delta = 3$.

The tree of self-avoiding walks

Pinning: conditioning on $\sigma(v) = j$.

SAW tree: Self-avoiding walks starting at vertex *a*. Leaves for cycles are added and pinned.



$$Z^{j}_{\nu}(G;\beta) = \sum_{\sigma \text{ s.t. } \sigma(\nu)=j} \beta^{m(\sigma)}$$

$$R(G, v; \beta) = \frac{Z_{v}^{1}(G; \beta)}{Z_{v}^{0}(G; \beta)}.$$

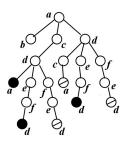
Idea: reducing the study of Z on graphs to its study on trees.

[Weitz '06]: $R(G, a; \beta) = R(T, a; \beta)$.

[Liu, Sinclair, Srivastava '19]:

- $Z_{\text{Ising}}(G;\beta)$ divides $Z_{\text{Ising}}(T;\beta)$.
- $Z_{\text{Ising}}(T;\beta) \neq 0 \Rightarrow Z_{\text{Ising}}(G;\beta) \neq 0.$

Trees and multivariate complex dynamics



$$h_{\beta}(z) := rac{eta z + 1}{eta + z}, \qquad F_{eta,k}(z_1, \dots, z_k) := \prod_{j=1}^k h_{eta}(z_j)$$

• If T is a node,

- $R(T, v; \beta) = \begin{cases} 1 & \text{if vertex unpinned;} \\ \infty & \text{if vertex pinned to 1;} \\ 0 & \text{if vertex pinned to 0.} \end{cases}$

•
$$(T_1, v_1), \ldots, (T_d, v_d)$$
: trees hanging from (T, a) ,
 $r_j = R(T_j, v_j; \beta)$. Then $R(T, v; \beta) = F_{\beta,d}(r_1, \ldots, r_d)$.

Finding zero-free regions: prove $F_{\beta,k}$ is closed on $S \subset \mathbb{C} \cup \{\infty\}$ with $-1 \notin S$. $Z_{\text{Ising}}(T;\beta) = Z_{\nu}^{0}(T,\nu;\beta) \left(1 + \frac{Z_{\nu}^{1}(T,\nu;\beta)}{Z_{\nu}^{0}(T,\nu;\beta)}\right) = Z_{\nu}^{0}(T,\nu;\beta) \left(1 + R(T,\nu;\beta)\right) \neq 0$

Proof-sketch of zero-free region

Our region: $\Delta \geq 3$ and $\left|\frac{\beta-1}{\beta+1}\right| \leq \varepsilon_{\Delta} = \tan\left(\frac{\pi}{4(\Delta-1)}\right)$.

Reminder:
$$h_{\beta}(z) := \frac{\beta z + 1}{\beta + z}, \qquad F_{\beta,k}(z_1, \dots, z_k) := \prod_{j=1}^k h_{\beta}(z_j).$$

Observation: $\frac{n}{n}$

$$\frac{h_{\beta}(z) - 1}{h_{\beta}(z) + 1} = \frac{(\beta - 1)(z - 1)}{(\beta + 1)(z + 1)}$$

Proof - Induction on height of tree - $S = \{z \in \mathbb{C} : \operatorname{Re}(z) \ge 0\} \cup \{\infty\}$ Claim 1: $\operatorname{Re}(z) \ge 0$ if and only if $|\frac{z-1}{z+1}| \le 1$.

Claim 2: If $\operatorname{Re}(z) \geq 0$, then $\left|\frac{h_{\beta}(z)-1}{h_{\beta}(z)+1}\right| \leq \varepsilon_{\Delta}$.

Claim 3: If
$$|\frac{y-1}{y+1}| \le \varepsilon_{\Delta}$$
, then $\operatorname{Arg}(y) \in \left[-\frac{\pi}{2(\Delta-1)}, \frac{\pi}{2(\Delta-1)}\right]$.

Claim 4: If $\operatorname{Re}(z_j) \ge 0$ for all j, then $\operatorname{Re}(F_{\beta,k}(z_1,\ldots,z_k)) \ge 0$.

The importance of pinnings in the Ising model

Trees with no pinnings are trivial in the Ising model (with no external field)!

T tree with no pinnings:

- $R(T, v; \beta) = 1$ for all β ;
- $Z_{\text{Ising}}(T;\beta) = 0$ if and only if $\beta = -1$.

[Bencs '18] Updated divisibility result for the independent set polynomial $T' \leftarrow$ subtree of SAW tree without pinnings, $Z_G(\lambda)$ divides $Z_{T'}(\lambda)$.

No such result can exist for the Ising model!

Trees without pinnings capture ratios / implementations in the Hard-core model.

The ideas of Bezáková-Galanis-Goldberg-Štefankovič

Independent set polynomial:

Easiness: Ratios (with pinnings) bounded away from -1.

Hardness: Ratios (no pinnings) dense around -1.

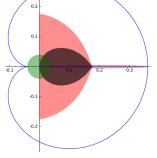
Cardioid:

 $\Lambda_{\Delta} = \{\lambda : |z| \leq 1/(\Delta - 1), \lambda = z/(1 - z)^{\Delta - 1}\}.$

Implementation result:

 $\lambda \notin \Lambda_{\Delta} \implies \{R(T, v; \lambda) : T \text{ tree max. deg. } \Delta\}$ is dense in the complex plane.

Proof idea : Complex dynamics on univariate tree recurrence $f(z) = \frac{1}{1 + \lambda z^d}$.

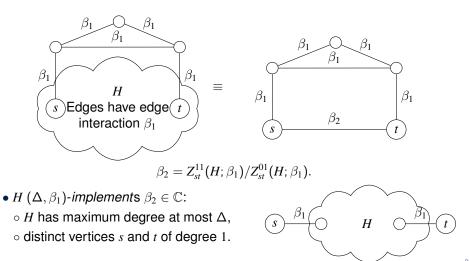


Zero-free regions for $\Delta = 10.$

Implementations when there is no external field

Definition idea: Let $\beta_1, \beta_2 \in \mathbb{C}^2$ and let *H* be a graph.

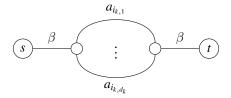
- $H \beta_1$ -implements β_2 with terminals $s, t \in V(H)$ if (H, s, t) with edge interaction
 - β_1 "behaves" as an edge with edge interaction β_2 .



A recursive gadget

$$h_{\beta}(x) = rac{eta x+1}{eta + x}, \qquad g_{\beta}(x) = h_{\beta}(h_{\beta}(x)) = rac{x+2eta + xeta^2}{1+2xeta + eta^2}$$

Ising program: Sequence a_0, a_1, \ldots , starting with $a_0 = \beta$ and satisfying $a_k = g_\beta(a_{i_{k,1}} \cdots a_{i_{k,d_k}})$ for $k \ge 1$, where $d_k \in [d]$ and $i_{k,1}, \ldots, i_{k,d} \in \{0, \ldots, k-1\}$.



• Ising program generates $a_k \iff \exists H_k$ that (Δ, β) -implements a_k .

Study the recurrence $f(z) = g_{\beta}(z^d)$.

Complex dynamics: implementing the complex plane

$$h_{\beta}(x) = rac{eta x+1}{eta + x}, \qquad g_{eta}(x) = h_{eta}(h_{eta}(x)) = rac{x+2eta + xeta^2}{1+2xeta + eta^2}$$

Ising model

 $\circ f(z) = g_{\beta}(z^d)$

- \circ Starting value: β (one edge)
- \circ Fixed point ω : 1

 $\circ \omega$ repelling when $|\frac{\beta-1}{\beta+1}| > \frac{1}{\sqrt{\Delta-1}}$.

Independent set polynomial

 $f(z) = (1 + \lambda z^d)^{-1}$

 \circ Starting value: λ (vertex unpinned)

 \circ Fixed point ω : choose fixed point with smallest norm.

 $\circ \omega$ repelling when $\lambda \notin \Lambda_{\Delta}$.

Observation: $f(z) = g(z^d)$ where g is Mobius map.

Strategy resembles [BGGS '18].

Complex dynamics: implementing the complex plane

Steps in the proof

① Get arbitrary close to ω (program-approximable fixed point). Specific to g.

lsing: Implements $g^n(\beta)$, which converges to 1 or -1.

2 Implement dense subset of open set U containing ω . General proof.

3 When ω is repelling,

$$\bigcup_{n=0}^{\infty} f^n(U) = \widehat{\mathbb{C}} \setminus E_f.$$

Use this to implement complex plane. General proof.

Implementation result: We can implement a dense subset of \mathbb{C} .

Zeros imply hardness?

Let $\beta \in \mathbb{C}_{\mathbb{A}} \setminus (\mathbb{R} \cup \{i, -i\}).$

Lemma 6: (Δ, β) implements $-1 \implies$ hardness of approximation.

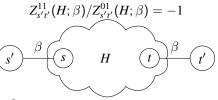
Idea: use zeros to (Δ, β) -implement -1.

Assumptions:

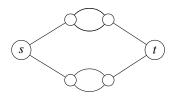
$$\circ Z_{\text{Ising}}(H;\beta) = 0$$

$$\circ \max\{\deg(s), \deg(t)\} \leq \Delta - 1$$

Implementing -1:



Example: Graph *G* with max. degree $\Delta = 3$. $Z_{st}^{01}(G; x) = (1 + x^2 + 2x^3)^2$ $Z_{st}^{11}(G; x) = x^2(2 + x + x^3)^2$ Zero β inside disc: $|\frac{\beta - 1}{\beta + 1}| < \frac{1}{\sqrt{\Delta - 1}}$ $\beta = 0.396608... + 0.917988...i$.



Conjecture and bottleneck

Corollary:

 $Z_{\text{Ising}}(H;\beta) = 0 \text{ for } H \text{ with} \implies \text{ISINGNORM}(\beta, \Delta, 1.01) \text{ and} \\ \text{maximum degree } \Delta - 1 \implies \text{ISINGARG}(\beta, \Delta, \pi/3) \text{ are } \#\text{P-hard.}$

Proof idea:

Choose H with minimum number of edges and Implement -1.

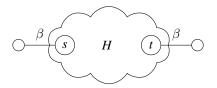
Conjecture:

 $Z_{\text{Ising}}(H;\beta) = 0$ for H with maximum degree Δ

 $\implies \begin{array}{l} \mathsf{ISINGNORM}(\beta, \Delta, 1.01) \text{ and} \\ \mathsf{ISINGARG}(\beta, \Delta, \pi/3) \text{ are } \# \mathsf{P}\text{-hard.} \end{array}$

Bottleneck:

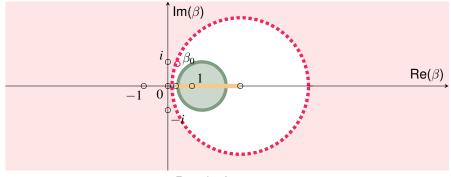
Our approach needs $\circ \max\{\deg(s), \deg(t)\} \le \Delta - 1$



Independent set polynomial: we can use trees without pinnings!

Open problems

- **1** Maximal zero-free region containing $(1/\beta_c, \beta_c)$.
- If a tree with pinnings has ratio r, can we (Δ, β)-implement r (without pinnings)?
- **3** Hardness when $\left|\frac{\beta-1}{\beta+1}\right| > \frac{1}{\Delta-1}$? (now $\left|\frac{\beta-1}{\beta+1}\right| > \frac{1}{\sqrt{\Delta-1}}$)
- 4 Zero on graph with maximum degree $\Delta \implies hardness$?



Results for $\Delta = 3$.