The complexity of approximating the complex-valued Ising model on bounded degree graphs

Andreas Galanis, Leslie Ann Goldberg, Andrés Herrera Poyatos

10-11 June 2021

DEPARTMENT OF
COMPUTER SCIENCE

Workshop on
Interplay between statistical mechanics, graph theory, computational complexity and holomorphic dynamics

Overview

- The Ising model on bounded-degree graphs (no external field)
- A novel zero-free region for the Ising model
- Hardness of approximation in the complex plane
- Connection between zeros and hardness in the Ising model

Galanis, Goldberg, Herrera-Poyatos, The complexity of approximating the complex-valued Ising model on bounded degree graphs, arXiv:2105.00287, 2021.

Brackground: the Ising Model

Parameters: $\beta \in \mathbb{C}$ (edge interaction), $\lambda \in \mathbb{C}$ (external field), graph $G=(V, E)$.
Configurations: $\sigma: V \rightarrow\{0,1\}$.
Probability of a configuration $\sigma: \mathbb{P}(\sigma) \propto w(\sigma)=\beta^{m(\sigma)} \lambda^{|\sigma|}$ where $m(\sigma)$ is the number of monochromatic edges in σ.
Ising partition function: $Z_{\text {Ising }}(G ; \beta, \lambda)=\sum_{\sigma} w(\sigma)$

$\lambda^{3} \beta^{3}$

$\lambda^{2} \beta$

$$
Z=\left(\lambda^{3}+1\right) \beta^{3}+3\left(\lambda^{2}+\lambda\right) \beta
$$

- Real $\beta>1$: Ferromagnetic (prefer many monochromatic edges)
- Real $\beta \in(0,1)$: Antiferromagnetic (prefer few monochromatic edges)

Computing the partition function

$\# \operatorname{ISING}(\beta, \lambda)$: On input $G=(V, E)$, compute the value $Z_{\text {Ising }}(G ; \beta, \lambda)$.

Exact computation of $Z_{\text {Ising }}(G ; \beta, \lambda)$ is \#P-hard for almost every $\beta, \lambda \in \mathbb{C} \backslash\{0\}$ [Dyer, Greenhill '00; Bulatov, Grohe '05; Goldberg, Grohe, Jerrum, Thurley ’08; Cai, Chen, Lu'11].

Problem: Can we approximate $\# \operatorname{ISING}(\beta, \lambda)$?

- FPTAS for real-valued $Z(G)$:

For $\varepsilon>0$, compute \hat{Z} in time $\operatorname{poly}(\operatorname{size}(G), 1 / \varepsilon)$ s.t. $\hat{Z}=e^{z} Z(G)$ for some $z \in[-\varepsilon, \varepsilon]$.

- FPTAS for complex-valued $Z(G)$:

For $\varepsilon>0$, compute \hat{Z} in time $\operatorname{poly}(\operatorname{size}(G), 1 / \varepsilon)$ s.t. $\hat{Z}=e^{z} Z(G)$ for some $z \in \mathbb{C}$ with $|z| \leq \varepsilon$.

Why complex parameters?

[Barvinok '17]

Absence of zeros \Rightarrow Approximation algorithm for $Z(G ; \lambda)$, in the complex plane $\Rightarrow \quad$ even for real values of λ

Main Idea:

- Assume $Z(G ; \lambda) \neq 0$ for all λ in a "region" around the origin.
- Taylor series expansion of $\log Z(G ; \lambda)$ converges.
- Compute truncated Taylor series.

Answering the question:
(1) [Patel-Regts '17] On bounded-degree graphs this gives poly-time algorithms.
(2) Complex zeros vs approximability: how critical is the absence of zeros?
(3) Connections with classical statistical physics/combinatorics results: phase transitions, quantum computation (IQP circuits), exact counting.

Approx. algorithms for the independent set polynomial

Zero-free regions for $\Delta=10$.
$\Delta:=$ maximum degree of input graph G.

Notation:
$Z_{G}(\lambda)=\sum_{I \text { independent set }} \lambda^{|I|}$.
Cardioid:
$\Lambda_{\Delta}=\left\{\lambda:|z| \leq 1 /(\Delta-1), \lambda=z /(1-z)^{\Delta-1}\right\}$.
Zero-free regions:
[Patel, Regts '16;
Harvey, Srivastava, Vondrák '16]:
FPTAS when $|\lambda|<\lambda^{*}(\Delta)=(\Delta-1)^{\Delta-1} / \Delta^{\Delta}$.
[Peters, Regts '19]: FPTAS in the strip around $\left[0, \lambda_{c}\right)$, where $\lambda_{c}=(\Delta-1)^{\Delta-1} /(\Delta-2)^{\Delta}$.
[Peters, Regts '19]: FPTAS when
$|\lambda| \leq \varepsilon_{\Delta, \epsilon} \sim \frac{\pi}{(2+\epsilon)(\Delta-1)}$ and $|\arg (\lambda)| \leq \frac{\varepsilon \pi}{2(2+\varepsilon)}$.
[Bencs, Csikvári '18]: FPTAS when $\operatorname{Re}(\lambda) \geq 0$ and $|\lambda|<\delta_{\Delta} \sim \frac{1.374}{\Delta}$.

Hardness for the independent set polynomial

Zero-free regions for $\Delta=10$.
$\Delta:=$ maximum degree of input graph G.

Notation:
$Z_{G}(\lambda)=\sum_{I \text { independent set }} \lambda^{|I|}$.
Cardioid:
$\Lambda_{\Delta}=\left\{\lambda:|z| \leq 1 /(\Delta-1), \lambda=z /(1-z)^{\Delta-1}\right\}$.
[Bezáková, Galanis, Goldberg, Štefankovič '18]: Approximation problem is \#P-hard for non-real $\lambda \notin \Lambda_{\Delta}$ on bipartite graphs.
[Buys '19, Rivera-Leterier '19]:
There exist $\lambda \in \operatorname{Int}\left(\Lambda_{\Delta}\right)$ and G with max. degree Δ such that $Z_{G}(\lambda)=0$.
[de Boer, Buys, Guerini, Peters, Regts '21]: Zeros \Rightarrow \#P-Hardness of approximation.

Approximation algorithms for Ising

Notation:

Δ maximum degree of input graph G.
$\beta_{c}:=\frac{\Delta}{\Delta-2}$ and $\left(1 / \beta_{c}, \beta_{c}\right)$ is the uniqueness region of the Δ-regular infinite tree (more on β_{c} later).

Setting 1: Ferromagnetic Ising (real $\beta>1$ and $\lambda \in \mathbb{C}$):
Lee-Yang zeros: zeros are on the unit circle $|\lambda|=1$.
[Liu, Sinclair, Srivastava '19]: FPTAS when $\beta>1$ and $|\lambda| \neq 1$.
[Peters, Regts '20]: FPTAS when $\beta<\beta_{c}$ and λ is on the "zero-free" arc of the unit circle.
[Buys, Galanis Patel, Regts '20]: \#P-hard when:

- $\beta \geq \beta_{c}$ and $\lambda \neq \pm 1$;
- $\beta<\beta_{c}$ and λ is not on the "zero-free" arc of the unit circle.

Approximation algorithms for Ising

Setting 2: No external field ($\beta \in \mathbb{C}$ and $\lambda=1$):

- [Liu-Sinclair-Srivastava '19]: FPTAS in a strip around $\left(1 / \beta_{c}, \beta_{c}\right)$.
- [Barvinok '17, Mann-Bremner '19]: FPTAS in the disc $\left|\frac{\beta-1}{\beta+1}\right| \leq \delta_{\Delta} \sim \frac{0.561}{\Delta}$.
- [Barvinok-Barvinok 21']: FPTAS in a "diamond" around some of $\left(1 / \beta_{c}, \beta_{c}\right)$. Hardness and zeros on non-real edge interactions: nothing known outside these regions.

This talk: [Galanis, Goldberg, Herrera-Poyatos '21] new work on this case.

A novel zero-free region

Theorem 1: Let $\Delta \geq 3$ and $\varepsilon_{\Delta}=\tan \left(\frac{\pi}{4(\Delta-1)}\right) \in(0,1)$.
Then $Z_{\text {Ising }}(G ; \beta) \neq 0$ for all $\beta \in \mathbb{C}$ with $\left|\frac{\beta-1}{\beta+1}\right| \leq \varepsilon_{\Delta}$ and all graphs G with maximum degree Δ.

Zero-free regions for $\Delta=3$. New region is in large circle.

Comparison with Barvinok-Mann-Bremner

- [Barvinok '17, Mann-Bremner '19]: FPTAS in the disc $\left|\frac{\beta-1}{\beta+1}\right| \leq \delta_{\Delta}$.

$$
\delta_{\Delta}=\max \left\{\sin \left(\frac{\alpha}{2}\right) \cos \left(\Delta \frac{\alpha}{2}\right): 0<\alpha<\frac{2 \pi}{3 \Delta}\right\}
$$

- Our region: FPTAS in the disc $\left|\frac{\beta-1}{\beta+1}\right| \leq \varepsilon_{\Delta}$.

$$
\varepsilon_{\Delta}=\tan \left(\frac{\pi}{4(\Delta-1)}\right)
$$

- Limit of $\delta_{\Delta}(\Delta-1)$: 0.561...
- Limit of $\varepsilon_{\Delta}(\Delta-1)$: $\pi / 4=0.785 \ldots$

Comparison with Barvinok-Barvinok and Liu-Sinclair-Srivastava

$\mathcal{E}_{\Delta}:=$ maximal zero-free region containing 1.

- [Liu-Sinclair-Srivastava '19]:

For any $\beta \in\left(1 / \beta_{c}, \beta_{c}\right)=\left(\frac{\Delta-2}{\Delta}, \frac{\Delta}{\Delta-2}\right)$, there exists a $\delta>0$ such that $B(\beta, \delta) \subseteq \mathcal{E}_{\Delta}$.
Proof is not constructive, δ is unknown.

- [Barvinok-Barvinok 21']:

Let $0<\delta<1$. If $|\operatorname{Re}(a)|<\frac{1-\delta}{\Delta}$ and $|\operatorname{Im}(a)| \leq \frac{\delta^{2}}{10 \Delta}$, then $e^{2 a} \in \mathcal{E}_{\Delta}$. Multivariate Ising, can include field close to 1.

- Our region: If $\left|\frac{\beta-1}{\beta+1}\right| \leq \varepsilon_{\Delta} \sim \frac{0.785 \ldots}{\Delta-1}$, then $\beta \in \mathcal{E}_{\Delta}$.

Zero-free regions for $\Delta=10$. These regions are incomparable for general Δ.

Computational problems

Fix $\beta \in \mathbb{C}, \Delta \geq 3, K>1$ real, $\rho \in(0, \pi / 2)$.

$\operatorname{ISINGNORM}(\beta, \Delta, K)$

Instance: A (multi)graph G with maximum degree at most Δ. Output: A rational number \hat{N} such that

$$
\hat{N} / K \leq\left|Z_{\text {Ising }}(G ; \beta)\right| \leq K \hat{N} .
$$

$\operatorname{ISINGARG}(\beta, \Delta, \rho)$

Instance: A (multi)graph G with maximum degree at most Δ. Output: A rational \hat{A} such that $|\hat{A}-a| \leq \rho$ for some $a \in \arg \left(Z_{\text {Ising }}(G ; \beta)\right)$, where $\arg (z)=\{a \in \mathbb{R}: \exp (a i)=z /|z|\}$.

Remark: we can amplify any constant approximation into an FPTAS.
Corollary: ISINGNORM $(\beta, \Delta, 1.01)$ and $\operatorname{IsINGARG}(\beta, \Delta, \pi / 3)$ have a poly-time algorithm when $\left|\frac{\beta-1}{\beta+1}\right|<\varepsilon_{\Delta} \sim \frac{0.785 \ldots}{\Delta-1}$.

Our hardness result

Theorem 2: Let $\Delta \geq 3$ and $\beta \in \mathbb{C}_{\mathbb{A}} \backslash(\mathbb{R} \cup\{i,-i\})$ with $\left|\frac{\beta-1}{\beta+1}\right|>\frac{1}{\sqrt{\Delta-1}}$. Then $\operatorname{IsINGNorm}(\beta, \Delta, 1.01)$ and $\operatorname{IsINGARG}(\beta, \Delta, \pi / 3)$ are $\# \mathrm{P}$-hard.

Remark: There are zeros β_{0} inside this region that imply hardness.

Results for $\Delta=3$.

The tree of self-avoiding walks

Pinning: conditioning on $\sigma(v)=j$.
SAW tree: Self-avoiding walks starting at vertex a. Leaves for cycles are added and pinned.

Example 1:

Example 2:

$$
\begin{gathered}
Z_{v}^{j}(G ; \beta)=\sum_{\sigma \text { s.t. } \sigma(v)=j} \beta^{m(\sigma)} \\
R(G, v ; \beta)=\frac{Z_{v}^{1}(G ; \beta)}{Z_{v}^{0}(G ; \beta)} .
\end{gathered}
$$

Idea: reducing the study of Z on graphs to its study on trees.
[Weitz '06]: $R(G, a ; \beta)=R(T, a ; \beta)$.
[Liu, Sinclair, Srivastava '19]:

- $Z_{\text {Ising }}(G ; \beta)$ divides $Z_{\text {Ising }}(T ; \beta)$.
- $Z_{\text {Ising }}(T ; \beta) \neq 0 \Rightarrow Z_{\text {Ising }}(G ; \beta) \neq 0$.

Trees and multivariate complex dynamics

$$
\begin{array}{ll}
h_{\beta}(z):=\frac{\beta z+1}{\beta+z}, \quad F_{\beta, k}\left(z_{1}, \ldots, z_{k}\right):=\prod_{j=1}^{k} h_{\beta}\left(z_{j}\right) \\
\text { • If } T \text { is a node, }
\end{array}, \begin{array}{ll}
1 & \text { if vertex unpinned; }
\end{array}, \begin{array}{ll}
\infty & \text { if vertex pinned to } 1 ; \\
0 & \text { if vertex pinned to } 0 .
\end{array},
$$

Finding zero-free regions: prove $F_{\beta, k}$ is closed on $S \subset \mathbb{C} \cup\{\infty\}$ with $-1 \notin S$.

$$
Z_{\text {Ising }}(T ; \beta)=Z_{v}^{0}(T, v ; \beta)\left(1+\frac{Z_{v}^{1}(T, v ; \beta)}{Z_{v}^{0}(T, v ; \beta)}\right)=Z_{v}^{0}(T, v ; \beta)(1+R(T, v ; \beta)) \neq 0
$$

Proof-sketch of zero-free region

Our region: $\Delta \geq 3$ and $\left|\frac{\beta-1}{\beta+1}\right| \leq \varepsilon_{\Delta}=\tan \left(\frac{\pi}{4(\Delta-1)}\right)$.
Reminder: $\quad h_{\beta}(z):=\frac{\beta z+1}{\beta+z}, \quad F_{\beta, k}\left(z_{1}, \ldots, z_{k}\right):=\prod_{j=1}^{k} h_{\beta}\left(z_{j}\right)$.
Observation: $\quad \frac{h_{\beta}(z)-1}{h_{\beta}(z)+1}=\frac{(\beta-1)(z-1)}{(\beta+1)(z+1)}$
Proof - Induction on height of tree $-S=\{z \in \mathbb{C}: \operatorname{Re}(z) \geq 0\} \cup\{\infty\}$
Claim 1: $\operatorname{Re}(z) \geq 0$ if and only if $\left|\frac{z-1}{z+1}\right| \leq 1$.
Claim 2: If $\operatorname{Re}(z) \geq 0$, then $\left|\frac{h_{\beta}(z)-1}{n_{\beta}(z)+1}\right| \leq \varepsilon_{\Delta}$.
Claim 3: If $\left|\frac{y-1}{y+1}\right| \leq \varepsilon_{\Delta}$, then $\operatorname{Arg}(y) \in\left[-\frac{\pi}{2(\Delta-1)}, \frac{\pi}{2(\Delta-1)}\right]$.
Claim 4: If $\operatorname{Re}\left(z_{j}\right) \geq 0$ for all j, then $\operatorname{Re}\left(F_{\beta, k}\left(z_{1}, \ldots, z_{k}\right)\right) \geq 0$.

The importance of pinnings in the Ising model

Trees with no pinnings are trivial in the Ising model (with no external field)!

T tree with no pinnings:

- $R(T, v ; \beta)=1$ for all β;
- $Z_{\text {Ising }}(T ; \beta)=0$ if and only if $\beta=-1$.
[Bencs '18] Updated divisibility result for the independent set polynomial $T^{\prime} \leftarrow$ subtree of SAW tree without pinnings,
$Z_{G}(\lambda)$ divides $Z_{T^{\prime}}(\lambda)$.
No such result can exist for the Ising mode!!
Trees without pinnings capture ratios / implementations in the Hard-core model.

The ideas of Bezáková-Galanis-Goldberg-Štefankovič

Independent set polynomial:

$$
Z_{G}(\lambda)=\sum_{I \text { independent set }} \lambda^{|I|} .
$$

Easiness: Ratios (with pinnings) bounded away from -1 .

Hardness: Ratios (no pinnings) dense around -1 .
Cardioid:
$\Lambda_{\Delta}=\left\{\lambda:|z| \leq 1 /(\Delta-1), \lambda=z /(1-z)^{\Delta-1}\right\}$.
Implementation result:
$\lambda \notin \Lambda_{\Delta} \Longrightarrow\{R(T, v ; \lambda): T$ tree max. deg. $\Delta\}$ is dense in the complex plane.

Proof idea : Complex dynamics on univariate tree recurrence $f(z)=\frac{1}{1+\lambda z^{d}}$.

Implementations when there is no external field

Definition idea: Let $\beta_{1}, \beta_{2} \in \mathbb{C}^{2}$ and let H be a graph.

- $H \beta_{1}$-implements β_{2} with terminals $s, t \in V(H)$ if (H, s, t) with edge interaction β_{1} "behaves" as an edge with edge interaction β_{2}.

- $H\left(\Delta, \beta_{1}\right)$-implements $\beta_{2} \in \mathbb{C}$:
$\circ H$ has maximum degree at most Δ,
- distinct vertices s and t of degree 1 .

A recursive gadget

$$
h_{\beta}(x)=\frac{\beta x+1}{\beta+x}, \quad g_{\beta}(x)=h_{\beta}\left(h_{\beta}(x)\right)=\frac{x+2 \beta+x \beta^{2}}{1+2 x \beta+\beta^{2}}
$$

Ising program: Sequence a_{0}, a_{1}, \ldots, starting with $a_{0}=\beta$ and satisfying

$$
a_{k}=g_{\beta}\left(a_{i k, 1} \cdots a_{i, d_{k}}\right) \quad \text { for } k \geq 1,
$$

where $d_{k} \in[d]$ and $i_{k, 1}, \ldots, i_{k, d} \in\{0, \ldots, k-1\}$.

- Ising program generates $a_{k} \Longleftrightarrow \exists H_{k}$ that (Δ, β)-implements a_{k}. Study the recurrence $f(z)=g_{\beta}\left(z^{d}\right)$.

Complex dynamics: implementing the complex plane

$$
h_{\beta}(x)=\frac{\beta x+1}{\beta+x}, \quad g_{\beta}(x)=h_{\beta}\left(h_{\beta}(x)\right)=\frac{x+2 \beta+x \beta^{2}}{1+2 x \beta+\beta^{2}}
$$

Ising model
$\circ f(z)=g_{\beta}\left(z^{d}\right)$

- Starting value: β (one edge)
- Fixed point ω : 1

Independent set polynomial
$f(z)=\left(1+\lambda z^{d}\right)^{-1}$

- Starting value: λ (vertex unpinned)
- Fixed point ω : choose fixed point with smallest norm.
$\circ \omega$ repelling when $\left|\frac{\beta-1}{\beta+1}\right|>\frac{1}{\sqrt{\Delta-1}}$. - ω repelling when $\lambda \notin \Lambda_{\Delta}$.

Observation: $f(z)=g\left(z^{d}\right)$ where g is Mobius map.
Strategy resembles [BGGS '18].

Complex dynamics: implementing the complex plane

Steps in the proof

(1) Get arbitrary close to ω (program-approximable fixed point). Specific to g.

Ising: Implements $g^{n}(\beta)$, which converges to 1 or -1 .
(2) Implement dense subset of open set U containing ω. General proof.
(3) When ω is repelling,

$$
\bigcup_{n=0}^{\infty} f^{n}(U)=\widehat{\mathbb{C}} \backslash E_{f} .
$$

Use this to implement complex plane. General proof.
Implementation result: We can implement a dense subset of \mathbb{C}.

Zeros imply hardness?

Let $\beta \in \mathbb{C}_{\mathbb{A}} \backslash(\mathbb{R} \cup\{i,-i\})$.
Lemma 6: (Δ, β) implements $-1 \Longrightarrow$ hardness of approximation.
Idea: use zeros to (Δ, β)-implement -1 .
Implementing -1 :

Assumptions:

- $Z_{\text {Ising }}(H ; \beta)=0$
- $\max \{\operatorname{deg}(s), \operatorname{deg}(t)\} \leq \Delta-1$

Example: Graph G with max. degree $\Delta=3$.
$Z_{s t}^{01}(G ; x)=\left(1+x^{2}+2 x^{3}\right)^{2}$
$Z_{s t}^{11}(G ; x)=x^{2}\left(2+x+x^{3}\right)^{2}$
Zero β inside disc: $\left|\frac{\beta-1}{\beta+1}\right|<\frac{1}{\sqrt{\Delta-1}}$
$\beta=0.396608 \ldots+0.917988 \ldots i$.

Conjecture and bottleneck

Corollary:

$Z_{\text {Ising }}(H ; \beta)=0$ for H with maximum degree Δ - 1

Proof idea:

Choose H with minimum number of edges and Implement -1 .

Conjecture:

$Z_{\text {Ising }}(H ; \beta)=0$ for H with maximum degree \triangle
$\Longrightarrow \begin{aligned} & \operatorname{ISINGNorm}(\beta, \Delta, 1.01) \text { and } \\ & \operatorname{IsINGARG}(\beta, \Delta, \pi / 3) \text { are } \# \text { P-hard. }\end{aligned}$

Bottleneck:

Our approach needs

- $\max \{\operatorname{deg}(s), \operatorname{deg}(t)\} \leq \Delta-1$

Independent set polynomial: we can use trees without pinnings!

Open problems

(1) Maximal zero-free region containing $\left(1 / \beta_{c}, \beta_{c}\right)$.
(2) If a tree with pinnings has ratio r, can we (Δ, β)-implement r (without pinnings)?
(3) Hardness when $\left|\frac{\beta-1}{\beta+1}\right|>\frac{1}{\Delta-1}$? (now $\left|\frac{\beta-1}{\beta+1}\right|>\frac{1}{\sqrt{\Delta-1}}$)
(4) Zero on graph with maximum degree $\Delta \Longrightarrow$ hardness?

Results for $\Delta=3$.

