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Overview

• The Ising model on bounded-degree graphs (no external field)

• A novel zero-free region for the Ising model

• Hardness of approximation in the complex plane

• Connection between zeros and hardness in the Ising model

Galanis, Goldberg, Herrera-Poyatos, The complexity of approximat-
ing the complex-valued Ising model on bounded degree graphs,
arXiv:2105.00287, 2021.
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Brackground: the Ising Model

Parameters: β ∈ C (edge interaction), λ ∈ C (external field), graph G = (V,E).

Configurations: σ : V → {0, 1}.

Probability of a configuration σ: P(σ) ∝ w(σ) = βm(σ)λ|σ|

where m(σ) is the number of monochromatic edges in σ.

Ising partition function: ZIsing(G;β, λ) =
∑
σ

w(σ)

λ3β3 λ2β λβ β3

Z = (λ3 + 1)β3 + 3(λ2 + λ)β

• Real β > 1: Ferromagnetic (prefer many monochromatic edges)
• Real β ∈ (0, 1): Antiferromagnetic (prefer few monochromatic edges)



4

Computing the partition function

#ISING(β, λ): On input G = (V,E), compute the value ZIsing(G;β, λ).

Exact computation of ZIsing(G;β, λ) is #P-hard for almost every β, λ ∈ C\{0}
[Dyer, Greenhill ’00; Bulatov, Grohe ’05; Goldberg, Grohe, Jerrum, Thurley ’08;
Cai, Chen, Lu ’11].

Problem: Can we approximate #ISING(β, λ)?

• FPTAS for real-valued Z(G):
For ε > 0, compute Ẑ in time poly(size(G), 1/ε) s.t. Ẑ = ezZ(G) for some
z ∈ [−ε, ε].

• FPTAS for complex-valued Z(G):
For ε > 0, compute Ẑ in time poly(size(G), 1/ε) s.t. Ẑ = ezZ(G) for some
z ∈ C with |z| ≤ ε.
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Why complex parameters?

[Barvinok ’17]

Absence of zeros
in the complex plane ⇒ Approximation algorithm for Z(G;λ),

even for real values of λ

Main Idea:
• Assume Z(G;λ) 6= 0 for all λ in a “region” around the origin.
• Taylor series expansion of log Z(G;λ) converges.
• Compute truncated Taylor series.

Answering the question:
1 [Patel-Regts ’17] On bounded-degree graphs this gives poly-time

algorithms.

2 Complex zeros vs approximability: how critical is the absence of zeros?

3 Connections with classical statistical physics/combinatorics results:
phase transitions, quantum computation (IQP circuits), exact counting.
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Approx. algorithms for the independent set polynomial

Zero-free regions for ∆ = 10.

∆ := maximum degree of input
graph G.

Notation:
ZG(λ) =

∑
I independent set

λ|I|.

Cardioid:
Λ∆ = {λ : |z| ≤ 1/(∆− 1), λ = z/(1− z)∆−1}.

Zero-free regions:
[Patel, Regts ’16;
Harvey, Srivastava, Vondrák ’16]:
FPTAS when |λ| < λ∗(∆) = (∆− 1)∆−1/∆∆.

[Peters, Regts ’19]: FPTAS in the strip around
[0, λc), where λc = (∆− 1)∆−1/(∆− 2)∆.

[Peters, Regts ’19]: FPTAS when
|λ| ≤ ε∆,ε ∼ π

(2+ε)(∆−1) and |arg(λ)| ≤ επ
2(2+ε) .

[Bencs, Csikvári ’18]: FPTAS when Re(λ) ≥ 0
and |λ| < δ∆ ∼ 1.374

∆ .
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Hardness for the independent set polynomial

Zero-free regions for ∆ = 10.

∆ := maximum degree of input
graph G.

Notation:
ZG(λ) =

∑
I independent set

λ|I|.

Cardioid:
Λ∆ = {λ : |z| ≤ 1/(∆− 1), λ = z/(1− z)∆−1}.

[Bezáková, Galanis, Goldberg, Štefankovič ’18]:
Approximation problem is #P-hard for non-real
λ /∈ Λ∆ on bipartite graphs.

[Buys ’19, Rivera-Leterier ’19]:
There exist λ ∈ Int(Λ∆) and G with max.
degree ∆ such that ZG(λ) = 0.

[de Boer, Buys, Guerini, Peters, Regts ’21]:
Zeros⇒ #P-Hardness of approximation.
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Approximation algorithms for Ising
Notation:

∆ maximum degree of input graph G.

βc := ∆
∆−2 and (1/βc, βc) is the uniqueness region of the ∆-regular infinite tree

(more on βc later).

Setting 1: Ferromagnetic Ising (real β > 1 and λ ∈ C):

Lee-Yang zeros: zeros are on the unit circle |λ| = 1.

[Liu, Sinclair, Srivastava ’19]: FPTAS when β > 1 and |λ| 6= 1.

[Peters, Regts ’20]: FPTAS when β < βc and λ is on the “zero-free” arc of the
unit circle.

[Buys, Galanis Patel, Regts ’20]: #P-hard when:
• β ≥ βc and λ 6= ±1;
• β < βc and λ is not on the “zero-free” arc of the unit circle.

This setting is well understood.
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Approximation algorithms for Ising
Setting 2: No external field (β ∈ C and λ = 1):

• [Liu-Sinclair-Srivastava ’19]: FPTAS in a strip around (1/βc, βc).

• [Barvinok ’17, Mann-Bremner ’19]: FPTAS in the disc |β−1
β+1 | ≤ δ∆ ∼ 0.561

∆ .

• [Barvinok-Barvinok 21’]: FPTAS in a “diamond” around some of (1/βc, βc).

Hardness and zeros on non-real edge interactions: nothing known outside
these regions.

0
1

−1 1/βc βc

Re(β)

Im(β)

Zero-free regions for ∆ = 3.

This talk: [Galanis, Goldberg, Herrera-Poyatos ’21] new work on this case.
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A novel zero-free region

Theorem 1: Let ∆ ≥ 3 and ε∆ = tan( π
4(∆−1) ) ∈ (0, 1).

Then ZIsing(G;β) 6= 0 for all β ∈ C with |β−1
β+1 | ≤ ε∆ and all graphs G with

maximum degree ∆.

0
1

−1 1/βc βc

i

−i

Re(β)

Im(β)

Zero-free regions for ∆ = 3. New region is in large circle.
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Comparison with Barvinok-Mann-Bremner
• [Barvinok ’17, Mann-Bremner ’19]: FPTAS in the disc |β−1

β+1 | ≤ δ∆.

δ∆ = max

{
sin
(α

2

)
cos
(

∆
α

2

)
: 0 < α <

2π
3∆

}
• Our region: FPTAS in the disc |β−1

β+1 | ≤ ε∆.

ε∆ = tan

(
π

4(∆− 1)

)

4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

∆

ε∆(∆− 1)

δ∆(∆− 1)

• Limit of δ∆(∆− 1):
0.561...

• Limit of ε∆(∆− 1):
π/4 = 0.785...
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Comparison with Barvinok-Barvinok and Liu-Sinclair-Srivastava

E∆ := maximal zero-free region containing 1.

• [Liu-Sinclair-Srivastava ’19]:
For any β ∈ (1/βc, βc) = ( ∆−2

∆ , ∆
∆−2 ), there exists a δ > 0 such that

B(β, δ) ⊆ E∆.
Proof is not constructive, δ is unknown.

• [Barvinok-Barvinok 21’]:

Let 0 < δ < 1. If |Re(a)| < 1− δ
∆

and |Im(a)| ≤ δ2

10∆
, then e2a ∈ E∆.

Multivariate Ising, can include field close to 1.

• Our region: If |β−1
β+1 | ≤ ε∆ ∼ 0.785...

∆−1 , then β ∈ E∆.

0
1

1/βc βc

Re(β)
Im(β)

Zero-free regions for ∆ = 10. These regions are incomparable for general ∆.
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Computational problems

Fix β ∈ C, ∆ ≥ 3, K > 1 real, ρ ∈ (0, π/2).

ISINGNORM(β,∆,K)

Instance: A (multi)graph G with maximum degree at most ∆.
Output: A rational number N̂ such that

N̂/K ≤ |ZIsing(G;β)| ≤ KN̂.

ISINGARG(β,∆, ρ)

Instance: A (multi)graph G with maximum degree at most ∆.
Output: A rational Â such that |Â− a| ≤ ρ for some a ∈ arg(ZIsing(G;β)), where
arg(z) = {a ∈ R : exp(ai) = z/|z|}.

Remark: we can amplify any constant approximation into an FPTAS.

Corollary: ISINGNORM(β,∆, 1.01) and ISINGARG(β,∆, π/3) have a poly-time
algorithm when |β−1

β+1 | < ε∆ ∼ 0.785...
∆−1 .
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Our hardness result
Theorem 2: Let ∆ ≥ 3 and β ∈ CA \ (R ∪ {i,−i}) with

∣∣∣β−1
β+1

∣∣∣ > 1√
∆−1

. Then
ISINGNORM(β,∆, 1.01) and ISINGARG(β,∆, π/3) are #P-hard.

Remark: There are zeros β0 inside this region that imply hardness.

0
1

−1

i

−i

β0

Re(β)

Im(β)

Results for ∆ = 3.
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The tree of self-avoiding walks
Pinning: conditioning on σ(v) = j.

SAW tree: Self-avoiding walks starting at
vertex a. Leaves for cycles are added and
pinned.

Example 1:

Example 2:

Zj
v(G;β) =

∑
σ s.t. σ(v)=j

βm(σ)

R (G, v;β) =
Z1

v (G;β)

Z0
v (G;β)

.

Idea: reducing the study of Z on
graphs to its study on trees.

[Weitz ’06]: R(G, a;β) = R(T, a;β).

[Liu, Sinclair, Srivastava ’19]:
• ZIsing(G;β) divides ZIsing(T;β).
• ZIsing(T;β) 6= 0⇒ ZIsing(G;β) 6= 0.
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Trees and multivariate complex dynamics

hβ(z) :=
βz + 1
β + z

, Fβ,k (z1, . . . , zk) :=
k∏

j=1

hβ (zj)

• If T is a node,

R(T, v;β) =


1 if vertex unpinned;
∞ if vertex pinned to 1;
0 if vertex pinned to 0.

• (T1, v1), . . . , (Td, vd): trees hanging from (T, a),
rj = R(Tj, vj;β). Then R(T, v;β) = Fβ,d(r1, . . . , rd).

Finding zero-free regions: prove Fβ,k is closed on S ⊂ C ∪ {∞} with −1 6∈ S.

ZIsing(T;β) = Z0
v (T, v;β)

(
1 +

Z1
v (T, v;β)

Z0
v (T, v;β)

)
= Z0

v (T, v;β) (1 + R(T, v;β)) 6= 0
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Proof-sketch of zero-free region

Our region: ∆ ≥ 3 and |β−1
β+1 | ≤ ε∆ = tan

(
π

4(∆−1)

)
.

Reminder: hβ(z) :=
βz + 1
β + z

, Fβ,k (z1, . . . , zk) :=
k∏

j=1

hβ (zj).

Observation:
hβ(z)− 1
hβ(z) + 1

=
(β − 1)(z− 1)

(β + 1)(z + 1)

Proof - Induction on height of tree - S = {z ∈ C : Re(z) ≥ 0} ∪ {∞}
Claim 1: Re(z) ≥ 0 if and only if | z−1

z+1 | ≤ 1.

Claim 2: If Re(z) ≥ 0, then | hβ(z)−1
hβ(z)+1 | ≤ ε∆.

Claim 3: If | y−1
y+1 | ≤ ε∆, then Arg(y) ∈

[
− π

2(∆−1) ,
π

2(∆−1)

]
.

Claim 4: If Re(zj) ≥ 0 for all j, then Re(Fβ,k (z1, . . . , zk)) ≥ 0. �
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The importance of pinnings in the Ising model

Trees with no pinnings are trivial in the Ising model (with no external field)!

T tree with no pinnings:
• R(T, v;β) = 1 for all β;

• ZIsing(T;β) = 0 if and only if β = −1.

[Bencs ’18] Updated divisibility result for the independent set polynomial
T ′ ← subtree of SAW tree without pinnings,
ZG(λ) divides ZT′(λ).

No such result can exist for the Ising model!

Trees without pinnings capture ratios / implementations in the Hard-core model.
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The ideas of Bezáková-Galanis-Goldberg-Štefankovič

Zero-free regions for
∆ = 10.

Independent set polynomial:

ZG(λ) =
∑

I independent set

λ|I|.

Easiness: Ratios (with pinnings) bounded away
from −1.

Hardness: Ratios (no pinnings) dense around −1.

Cardioid:
Λ∆ = {λ : |z| ≤ 1/(∆− 1), λ = z/(1− z)∆−1}.

Implementation result:
λ 6∈ Λ∆ =⇒ {R(T, v;λ) : T tree max. deg. ∆} is
dense in the complex plane.

Proof idea : Complex dynamics on univariate tree

recurrence f (z) =
1

1 + λzd .
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Implementations when there is no external field
Definition idea: Let β1, β2 ∈ C2 and let H be a graph.
• H β1-implements β2 with terminals s, t ∈ V(H) if (H, s, t) with edge interaction
β1 “behaves” as an edge with edge interaction β2.

H
Edges have edge

interaction β1

s t

β1

β1β1

β1 β1
≡

s t
β2

β1

β1β1

β1 β1

β2 = Z11
st (H;β1)/Z01

st (H;β1).

• H (∆, β1)-implements β2 ∈ C:
◦ H has maximum degree at most ∆,
◦ distinct vertices s and t of degree 1.

Hs t
β1 β1
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A recursive gadget

hβ(x) =
βx + 1
β + x

, gβ(x) = hβ(hβ(x)) =
x + 2β + xβ2

1 + 2xβ + β2

Ising program: Sequence a0, a1, . . ., starting with a0 = β and satisfying
ak = gβ(aik,1 · · · aik,dk

) for k ≥ 1,
where dk ∈ [d] and ik,1, . . . , ik,d ∈ {0, . . . , k − 1}.

s ... t
β β

aik,1

aik,dk

• Ising program generates ak ⇐⇒ ∃Hk that (∆, β)-implements ak.

Study the recurrence f (z) = gβ(zd).
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Complex dynamics: implementing the complex plane

hβ(x) =
βx + 1
β + x

, gβ(x) = hβ(hβ(x)) =
x + 2β + xβ2

1 + 2xβ + β2

Ising model

◦ f (z) = gβ(zd)

◦ Starting value: β (one edge)

◦ Fixed point ω: 1

◦ ω repelling when |β−1
β+1 | >

1√
∆−1

.

Independent set polynomial

f (z) = (1 + λzd)−1

◦ Starting value: λ (vertex unpinned)

◦ Fixed point ω: choose fixed point
with smallest norm.

◦ ω repelling when λ 6∈ Λ∆.

Observation: f (z) = g(zd) where g is Mobius map.

Strategy resembles [BGGS ’18].
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Complex dynamics: implementing the complex plane

Steps in the proof

1 Get arbitrary close to ω (program-approximable fixed point). Specific to g.

s · · · t
β ββ β

Ising: Implements gn(β), which converges to 1 or −1.
2 Implement dense subset of open set U containing ω. General proof.

3 When ω is repelling,
∞⋃

n=0

f n(U) = Ĉ \ Ef .

Use this to implement complex plane. General proof.

Implementation result: We can implement a dense subset of C.
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Zeros imply hardness?

Let β ∈ CA \ (R ∪ {i,−i}).

Lemma 6: (∆, β) implements −1 =⇒ hardness of approximation.

Idea: use zeros to (∆, β)-implement −1.

Assumptions:
◦ ZIsing(H;β) = 0

◦ max{deg(s), deg(t)} ≤ ∆− 1

Implementing −1:

Z11
s′t′(H;β)/Z01

s′t′(H;β) = −1

Hs ts′ t′
β β

Example: Graph G with max. degree ∆ = 3.

Z01
st (G; x) = (1 + x2 + 2x3)2

Z11
st (G; x) = x2(2 + x + x3)2

Zero β inside disc: |β−1
β+1 | <

1√
∆−1

β = 0.396608...+ 0.917988...i.

s t



25

Conjecture and bottleneck

Corollary:
ZIsing(H;β) = 0 for H with
maximum degree ∆− 1

=⇒ ISINGNORM(β,∆, 1.01) and
ISINGARG(β,∆, π/3) are #P-hard.

Proof idea:
Choose H with minimum number of edges and Implement −1. �

Conjecture:
ZIsing(H;β) = 0 for H with
maximum degree ∆

=⇒ ISINGNORM(β,∆, 1.01) and
ISINGARG(β,∆, π/3) are #P-hard.

Bottleneck:

Our approach needs
◦ max{deg(s), deg(t)} ≤ ∆− 1 Hs t

β β

Independent set polynomial: we can use trees without pinnings!
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Open problems

1 Maximal zero-free region containing (1/βc, βc).

2 If a tree with pinnings has ratio r, can we (∆, β)-implement r (without
pinnings)?

3 Hardness when |β−1
β+1 | >

1
∆−1 ? (now |β−1

β+1 | >
1√

∆−1
)

4 Zero on graph with maximum degree ∆ =⇒ hardness?

0
1

−1

i

−i

β0

Re(β)

Im(β)

Results for ∆ = 3.
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