Lee-Yang zeros and the complexity of the ferromagnetic Ising Model on bounded-degree graphs

Piotr Buys¹ Andreas Galanis² Viresh Patel¹ Guus Regts¹

¹Korteweg de Vries Institute for Mathematics University of Amsterdam

> ²Department of Computer Science University of Oxford

> > June 2021

Values for which the Ising partition function is zero.

=

Values for which approximating the Ising partition function is #P-hard.

The Ising Model

Wilhelm Lenz (1888 - 1957)

Ernst Ising (1900 - 1998)

- For a graph G = (V, E) a *configuration* is a map $\sigma : V \to \{+, -\}$.
- Let $b \in (0,1)$ and $\lambda \geq 1$, we define the *weight* of a configuration to be

$$W_{\sigma}(\lambda, b) = \lambda^{n_{\star}(\sigma)} b^{\delta(\sigma)},$$

where $n_{+}(\sigma)$ is the number of vertices assigned + and $\delta(\sigma)$ the number of edges with different spins.

• The probability of a certain configuration σ is $W_{\sigma}(\lambda, b)/Z$, where

$$Z = Z(\lambda, b) = \sum_{\sigma: V \to \{\star, -\}} W_{\sigma}(\lambda, b) = \sum_{\sigma: V \to \{\star, -\}} \lambda^{n_{\star}(\sigma)} b^{\delta(\sigma)}.$$

Example

Approximating $Z_G(\lambda, b)$

Let $\mathbb{Q}[i] = \{z \in \mathbb{C} : \operatorname{re}(z), \operatorname{im}(z) \in \mathbb{Q}\}.$ Let $\lambda \in \mathbb{Q}[i], b \in (0, 1) \cap \mathbb{Q}, K \in \mathbb{Q}_{\geq 1}$ and $\Delta \in \mathbb{Z}_{\geq 3}.$ We consider the following problems.

Name #IsingNorm(λ, b, Δ, K). Instance A graph G = (V, E) with maximum degree $\leq \Delta$. Output If $Z_G(\lambda, b) = 0$, the algorithm may output any rational. Otherwise, it must return a rational \widehat{N} such that $\widehat{N}/K \leq |Z_G(\lambda, b)| \leq K\widehat{N}$.

and for $\rho \in \mathbb{Q}_{\geq 0}$

Name #IsingArg $(\lambda, b, \Delta, \rho)$. Instance A graph G = (V, E) with maximum degree $\leq \Delta$. Output If $Z_G(\lambda, b) = 0$, the algorithm may output any rational. Otherwise, it must return a rational \widehat{A} such that $|\widehat{A} - a| \leq \rho$ for some $a \in \arg(Z_G(\lambda, b))$.

Approximating $Z_G(\lambda, b)$

Name #IsingNorm(λ, b, Δ, K).

Instance A graph G = (V, E) with maximum degree $\leq \Delta$.

Output If $Z_G(\lambda, b) = 0$, the algorithm may output any rational. Otherwise, it must return a rational \widehat{N} such that $\widehat{N}/K \leq |Z_G(\lambda, b)| \leq K\widehat{N}$.

and

Name #IsingArg $(\lambda, b, \Delta, \rho)$. Instance A graph G = (V, E) with maximum degree $\leq \Delta$. Output If $Z_G(\lambda, b) = 0$, the algorithm may output any rational. Otherwise, it must return a rational \widehat{A} such that $|\widehat{A} - a| \leq \rho$ for some $a \in \arg(Z_G(\lambda, b))$.

A fully polynomial time approximation scheme (FPTAS) for approximating $Z_G(\lambda, b)$ is an algorithm that for any *n*-vertex graph *G* of maximum degree at most Δ and any rational $\varepsilon > 0$ solves both problems #IsingNorm $(\lambda, b, \Delta, 1 + \varepsilon)$ and #IsingArg $(\lambda, b, \Delta, \varepsilon)$ in time polynomial in n/ε .

Approximation schemes and Lee-Yang zeros

The Lee-Yang theorem (1952) states that for fixed $b \in (0,1)$ the complex zeros of $Z_G(\lambda, b)$ for any graph G lie on the unit circle. Peters and Regts showed in 2018 that the situation for graphs with with

maximum degree $\leq \Delta$ is as follows:

Zeros are dense and contained in the red arcs

'jotr Buys	Ising Model	
------------	-------------	--

Approximation schemes and Lee-Yang zeros

- Liu, Sinclair, and Srivastava (2018) obtained an FPTAS for approximating $Z_G(\lambda, b)$ for $\lambda \notin \mathbb{S}$.
- Using the methods by Barvinok (2017) and Patel and Regts (2017) Peters and Regts obtained an FPTAS for approximating Z_G(λ, b) for 1 − 2/Δ < b < 1 and λ ∈ S \ I_Δ(b).

Our main result is the following:

Theorem (B., Galanis, Patel, Regts)

Let $\Delta \ge 3$ be an integer and let K = 1.001 and $\rho = \pi/40$.

(a) Let b ∈ (0, Δ-2/Δ] be a rational, and λ ∈ Q[i] ∩ S such that λ ≠ ±1. Then the problems #lsingNorm(λ, b, Δ, K) and #lsingArg(λ, b, Δ, ρ) are #P-hard.
(b) Let b ∈ (Δ-2/Δ, 1) be a rational. Then the collection of complex numbers λ ∈ Q[i] ∩ I_Δ(b) for which #lsingNorm(λ, b, Δ, K) and #lsingArg(λ, b, Δ, ρ) are #P-hard is dense in the arc I_Δ(b).

- $\bullet~\#\mathsf{P}$ is a complexity class of counting problems.
 - What is the value of the permanent of a given matrix consisting of 1s and 0s?
 - How many perfect matchings are there in a given bipartite graph?
- #IsingNorm (λ, b, Δ, K) being #P-hard implies that if there is a polynomial time algorithm to solve #IsingNorm (λ, b, Δ, K) , then any problem in #P can be solved in polynomial time.
- We show that a polynomial time algorithm for #lsingNorm(λ, b, Δ, K) can be used to solve the problem of calculating Z_G(λ, b̂) exactly given a 3-regular graph G in polynomial time.
- This problem is known to be #P-hard [Kowalczyk-Cai '11].

Very rough idea of the reduction

This \hat{b} is chosen to have the property that $Z_G(\lambda, \hat{b})$ cannot be zero.

Very rough idea of the reduction

We transform the input graph G in multiple ways. Involving steps like:

• We replace edges of G by paths with gadgets to simulate edge activity \hat{b} .

• We probe degree 2 vertices with multiple gadgets.

A polynomial amount of applications of #lsingNorm (λ, b, Δ, K) to these transformed graphs allow us to calculate $Z_G(\lambda, \hat{b})$ exactly.

Very rough idea of the reduction

- We need our gadgets to exist within the family of rooted trees with bounded degree Δ and root degree 1.
- We need our gadgets to be *small* compared to the size of the input graph *G*.

Ratios/fields

Recall that

$$Z_{G}(\lambda) = \sum_{\sigma: V \to \{\star, -\}} \lambda^{|n_{\star}(\sigma)|} b^{|\delta(\sigma)|}.$$

• For a graph G and a vertex $v \in V$ we define

$$Z_{G,v^*}(\lambda) := \sum_{\sigma: V \to \{+,-\}; \sigma(v) = +} \lambda^{|n_*(\sigma)|} b^{|\delta(\sigma)|}$$

and we define $Z_{G,v^-}(\lambda)$ analogously.

• We then define the ratio

$$R_{G,\nu}(\lambda) = \frac{Z_{G,\nu^*}(\lambda)}{Z_{G,\nu^*}(\lambda)}$$

• Note:

$$Z_{G}(\lambda) = Z_{G,\nu^{+}}(\lambda) + Z_{G,\nu^{-}}(\lambda) = 0 \quad \Leftrightarrow \quad R_{G,\nu}(\lambda) = -1.$$

Ratios/fields: Example

$$R_{G,\nu}(\lambda) = \frac{Z_{G,\nu^+}(\lambda)}{Z_{G,\nu^-}(\lambda)}$$

Example

Let G be an edge and v one of its endpoints.

These ratios are rational maps $\mathbb{S} \to \mathbb{S}$. Given a particular λ , for our reduction to work we need the following.

• We need the ratios to be dense in the unit circle, i.e. we want

 $\{R_{T,v}(\lambda) : T \text{ tree of bounded degree } \Delta \text{ with } \deg(v) = 1\}$

to be dense in \mathbb{S} .

- We need exponentially fast implementation, i.e. we need an algorithm that, given a $P \in S$ and $\epsilon > 0$, yields a rooted tree (T, v) such that
 - T has its degree bounded by Δ and deg(v) = 1;
 - $|R_{T,\nu}(\lambda) P| < \epsilon;$
 - ► the size of T is O(log(1/ε)).

Ratios/fields

We prove

Lemma

Let $\Delta \geq 3$ be an integer. (a) Let $b \in (0, \frac{\Delta - 2}{\Delta}]$ be a rational, and $\lambda \in \mathbb{Q}[i] \cap \mathbb{S}$ such that $\lambda \neq \pm 1$. Then $\{R_{T,v}(\lambda) : T \text{ tree bounded degree } \Delta \text{ with } \deg(v) = 1\}$ is dense in \mathbb{S} . (b) Let $b \in (\frac{\Delta - 2}{\Delta}, 1)$ be a rational. Then $\{R_{T,v}(\lambda) : T \text{ tree bounded degree } \Delta \text{ with } \deg(v) = 1\}$ is dense in \mathbb{S} for a dense set of complex numbers in $\lambda \in \mathbb{Q}[i] \cap I_{\Delta}(b)$.

Lemma

Density implies an algorithm for exponentially fast implementation.

Pjotr Buys

Graph constructions

Suppose we have a rooted graph (G, v) with ratio $R_{G,v}(\lambda)$.

We construct a new graph \tilde{G} by attaching k disjoint copies of G to a new root w.

We have $R_{\widetilde{G},w}(\lambda) = f_{k,\lambda}(R_{G,v}(\lambda))$, where

$$f_{k,\lambda}(z) = \lambda \left(\frac{z+b}{bz+1}\right)^k$$

Graph constructions

Let $f_{\lambda}(z) = f_{\lambda,1}(z) = \lambda\left(\frac{z+b}{bz+1}\right)$. Then the ratio of a path on *n* vertices is $f_{\lambda}^{\circ n}(1)$ If (G, v) is a rooted graph with ratio $\mu = R_{G,v}(\lambda)$ then the ratio is $f_{\mu}^{\circ n}(1)$ If $(G_1, v_1) \dots (G_n, v_n)$ are rooted graphs with ratios μ_1, \dots, μ_n then $(f_{\mu_1} \circ \cdots \circ f_{\mu_1})(1)$

The Möbius transformation $f_{\mu}(z) = \mu \left(\frac{z+b}{bz+1}\right)$

Zeros imply density (easy version)

- Suppose G is a graph and λ_0 a parameter such that $Z_G(\lambda_0) = 0$.
- Then arbitrarily close to λ_0 there is a parameter λ_1 with a rooted tree (T, v) such that, $\Delta(G) \ge \Delta(T)$, deg(v) = 1 and $R_{T,v}(\lambda_1) = -1$.
- There is an arc A around λ_1 such that for all $\mu \in R_{T,v}(A)$ the map f_{μ} is elliptic.

Zeros imply density (easy version)

- Suppose G is a graph and λ_0 a parameter such that $Z_G(\lambda_0) = 0$.
- Then arbitrarily close to λ_0 there is a parameter λ_1 with a rooted tree (T, v) such that, $\Delta(G) \ge \Delta(T)$, deg(v) = 1 and $R_{T,v}(\lambda_1) = -1$.
- There is an arc A around λ_1 such that for all $\mu \in R_{T,\nu}(A)$ the map f_{μ} is elliptic.

Lemma

If $b \in (0,1) \cap \mathbb{Q}$ and $\mu \in \mathbb{Q}[i] \cap \mathbb{S}$ such that $\mu \neq -1$ and f_{μ} is elliptic, then f_{μ} is conjugate to an irrational rotation.

• So (for A small enough) for every $\lambda \in A \cap \mathbb{Q}[i]$ with $\lambda \neq \lambda_1$ the set

$$\{f^{\circ n}_{R_{\mathcal{T},v}(\lambda)}(1):n\geq 1\}$$

is dense in $\mathbb{S}.$

Zeros imply density (easy version)

Recall that $\{f_{R_{T,v}(\lambda)}^{\circ n}(1) : n \ge 1\}$ are ratios of graphs of the form:

$$\begin{array}{c|c} f_{\mathcal{R}_{T,\nu}(\lambda)}^{on}(1) \\ \hline T & T & T \\ \hline T & T & T \\ \hline T & T & T \\ \hline \end{array}$$

If these are dense in ${\mathbb S}$ then ratios of the following graphs are also dense in ${\mathbb S}$:

Zeros imply density for all $\lambda \in \mathbb{Q}[i] \cap \mathbb{S} \setminus \{\pm 1\}$

If $b \in (0, \frac{\Delta-2}{\Delta}]$ and $\lambda \in \mathbb{Q}[i] \cap \mathbb{S} \setminus \{\pm 1\}$ we can find a rooted tree (T, v) with $\Delta(T) \leq \Delta$ and deg $(v) \leq \Delta - 2$ with its ratio close enough to -1.

Density implies exponentially fast implementation

If ratios are dense in S we can find two trees (T_1, v_1) and (T_2, v_2) with ratios μ_1 and μ_2 such that f_{μ_1}, f_{μ_2} are hyperbolic but close to parabolic/elliptic.

We choose these parameters such that the attracting fixed points P_1 and P_2 of f_{μ_1} and f_{μ_2} satisfy $1/2 < f'_{\mu_i}(P_i) < 1$.

Density implies exponentially fast implementation

Lemma

Let I be the small arc between the fixed points P_1 and P_2 . Given any $P \in I$ and $\epsilon > 0$ we can find indices $i_1, \ldots, i_N \in \{1, 2\}$ such that

$$\left|(f_{\mu_{i_{N}}}\circ\cdots\circ f_{\mu_{i_{1}}})(1)-P
ight|<\epsilon$$

with $N = O(\log(1/\epsilon))$.

Density implies exponentially fast implementation

Lemma

Let I be the small arc between the fixed points P_1 and P_2 . Given any $P \in I$ and $\epsilon > 0$ we can find indices $i_1, \ldots, i_K \in \{1, 2\}$ such that

$$\left|(f_{\mu_{i_N}}\circ\cdots\circ f_{\mu_{i_1}})(1)-P
ight|<\epsilon$$

with $N = \mathcal{O}(\log(1/\epsilon))$.

The tree with ratio $(f_{\mu_{i_M}} \circ \cdots \circ f_{\mu_{i_1}})(1)$ has size at most

$$\max\{|V(T_1)|, |V(T_2)|\} \cdot N = \mathcal{O}(\log(1/\epsilon)).$$

When λ is in an arc where zeros are dense, the map $f_{\Delta-1,\lambda}$ is expanding on \mathbb{S} . This means that there is a fixed M such that $f_{\Delta-1,\lambda}^M(I) = \mathbb{S}$. With this we can lift the implementation on points on I to arbitrary points in \mathbb{S} with maps of the form

$$(f^{M}_{\Delta-1,\lambda}\circ f_{\mu_{i_{N}}}\circ\cdots\circ f_{\mu_{i_{1}}})(1)$$

belonging to trees of size $(\Delta - 1)^M \cdot \mathcal{O}(\log(1/\epsilon)) = \mathcal{O}(\log(1/\epsilon)).$

Summary

$$\overline{\{\lambda \in \mathbb{C} : Z_{G}(\lambda) = 0 \text{ for some } G \in \mathcal{G}_{\Delta}\}} =$$

$$=$$

$$\overline{\{\lambda \in \mathbb{S} : \{R_{G,v}(\lambda) : G \in \mathcal{G}_{\Delta}\} \text{ is dense in } \mathbb{S}\}}$$

$$=$$

 $\{\lambda \in \mathbb{Q}[i] : \text{approximating } Z_G(\lambda) \text{ for } G \in \mathcal{G}_\Delta \text{ is } \#P\text{-hard}\}$

 $= \{\lambda \in \mathbb{C} : \{R_{G,v} : G \in \mathcal{G}_{\Delta}\} \text{ is not normal around } \lambda\}.$

Lee-Yang zeros and the complexity of the ferromagnetic Ising Model on bounded-degree graphs

Piotr Buys¹ Andreas Galanis² Viresh Patel¹ Guus Regts¹

¹Korteweg de Vries Institute for Mathematics University of Amsterdam

> ²Department of Computer Science University of Oxford

> > June 2021