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Very short summary

Values for which the Ising partition function is zero.

=

Values for which approximating the Ising partition function is #P-hard.
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The Ising Model

Wilhelm Lenz (1888 - 1957) Ernst Ising (1900 - 1998)
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The Ising Model

For a graph G = (V ,E ) a configuration is a map σ : V → {+, -}.
Let b ∈ (0, 1) and λ ≥ 1, we define the weight of a configuration to be

Wσ(λ, b) = λn+(σ)bδ(σ),

where n+(σ) is the number of vertices assigned + and δ(σ) the number of
edges with different spins.

The probability of a certain configuration σ is Wσ(λ, b)/Z , where

Z = Z (λ, b) =
∑

σ:V→{+,-}

Wσ(λ, b) =
∑

σ:V→{+,-}

λn+(σ)bδ(σ).
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Example

Example
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ZG (λ, b) = λ3 + 3b2λ2 + 3b2λ+ 1
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Approximating ZG (λ, b)

Let Q[i ] = {z ∈ C : re(z), im(z) ∈ Q}.
Let λ ∈ Q[i ], b ∈ (0, 1) ∩Q, K ∈ Q≥1 and ∆ ∈ Z≥3.
We consider the following problems.

Name #IsingNorm(λ, b,∆,K ).
Instance A graph G = (V ,E ) with maximum degree ≤ ∆.
Output If ZG (λ, b) = 0, the algorithm may output any rational. Otherwise, it must

return a rational N̂ such that N̂/K ≤ |ZG (λ, b)| ≤ KN̂.

and for ρ ∈ Q≥0

Name #IsingArg(λ, b,∆, ρ).
Instance A graph G = (V ,E ) with maximum degree ≤ ∆.
Output If ZG (λ, b) = 0, the algorithm may output any rational. Otherwise, it must

return a rational Â such that |Â− a| ≤ ρ for some a ∈ arg(ZG (λ, b)).
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Approximating ZG (λ, b)

Name #IsingNorm(λ, b,∆,K ).
Instance A graph G = (V ,E ) with maximum degree ≤ ∆.
Output If ZG (λ, b) = 0, the algorithm may output any rational. Otherwise, it must

return a rational N̂ such that N̂/K ≤ |ZG (λ, b)| ≤ KN̂.

and

Name #IsingArg(λ, b,∆, ρ).
Instance A graph G = (V ,E ) with maximum degree ≤ ∆.
Output If ZG (λ, b) = 0, the algorithm may output any rational. Otherwise, it must

return a rational Â such that |Â− a| ≤ ρ for some a ∈ arg(ZG (λ, b)).

A fully polynomial time approximation scheme (FPTAS) for approximating
ZG (λ, b) is an algorithm that for any n-vertex graph G of maximum degree at
most ∆ and any rational ε > 0 solves both problems #IsingNorm(λ, b,∆, 1 + ε)
and #IsingArg(λ, b,∆, ε) in time polynomial in n/ε.
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Approximation schemes and Lee-Yang zeros

The Lee-Yang theorem (1952) states that for fixed b ∈ (0, 1) the complex zeros of
ZG (λ, b) for any graph G lie on the unit circle.
Peters and Regts showed in 2018 that the situation for graphs with with
maximum degree ≤ ∆ is as follows:

0 < b ≤ 1− 2/∆ 1− 2/∆ < b < 1

I∆(b)

Zeros are dense and contained in the red arcs
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Approximation schemes and Lee-Yang zeros

Liu, Sinclair, and Srivastava (2018) obtained an FPTAS for approximating
ZG (λ, b) for λ 6∈ S.

Using the methods by Barvinok (2017) and Patel and Regts (2017) Peters
and Regts obtained an FPTAS for approximating ZG (λ, b) for
1− 2/∆ < b < 1 and λ ∈ S \ I∆(b).

Our main result is the following:

Theorem (B., Galanis, Patel, Regts)

Let ∆ ≥ 3 be an integer and let K = 1.001 and ρ = π/40.

(a) Let b ∈
(
0, ∆−2

∆

]
be a rational, and λ ∈ Q[i ]∩ S such that λ 6= ±1. Then the

problems #IsingNorm(λ, b,∆,K ) and #IsingArg(λ, b,∆, ρ) are #P-hard.

(b) Let b ∈
(

∆−2
∆ , 1

)
be a rational. Then the collection of complex numbers

λ ∈ Q[i ] ∩ I∆(b) for which #IsingNorm(λ, b,∆,K ) and #IsingArg(λ, b,∆, ρ)
are #P-hard is dense in the arc I∆(b).
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#P-Hardness

#P is a complexity class of counting problems.
I What is the value of the permanent of a given matrix consisting of 1s and 0s?
I How many perfect matchings are there in a given bipartite graph?

#IsingNorm(λ, b,∆,K ) being #P-hard implies that if there is a polynomial
time algorithm to solve #IsingNorm(λ, b,∆,K ), then any problem in #P can
be solved in polynomial time.

We show that a polynomial time algorithm for #IsingNorm(λ, b,∆,K ) can
be used to solve the problem of calculating ZG (λ, b̂) exactly given a
3-regular graph G in polynomial time.

This problem is known to be #P-hard [Kowalczyk-Cai ’11].

Pjotr Buys Ising Model June 2021 10 / 29



Very rough idea of the reduction

This b̂ is chosen to have the property that ZG (λ, b̂) cannot be zero.

b

λ

b̂

λ
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Very rough idea of the reduction

We transform the input graph G in multiple ways. Involving steps like:

We replace edges of G by paths with gadgets to simulate edge activity b̂.

H H H

We probe degree 2 vertices with multiple gadgets.

H1

Hm

A polynomial amount of applications of #IsingNorm(λ, b,∆,K ) to these
transformed graphs allow us to calculate ZG (λ, b̂) exactly.
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Very rough idea of the reduction

H1

Hm

We need our gadgets to exist within the family of rooted trees with bounded
degree ∆ and root degree 1.

We need our gadgets to be small compared to the size of the input graph G .
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Ratios/fields

Recall that
ZG (λ) =

∑
σ:V→{+,-}

λ|n+(σ)|b|δ(σ)|.

For a graph G and a vertex v ∈ V we define

ZG ,v+(λ) :=
∑

σ:V→{+,-};σ(v)=+

λ|n+(σ)|b|δ(σ)|

and we define ZG ,v-(λ) analogously.

We then define the ratio

RG ,v (λ) =
ZG ,v+(λ)

ZG ,v-(λ)
.

Note:

ZG (λ) = ZG ,v+(λ) + ZG ,v-(λ) = 0 ⇔ RG ,v (λ) = −1.
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Ratios/fields: Example

RG ,v (λ) =
ZG ,v+(λ)

ZG ,v-(λ)

Example

Let G be an edge and v one of its endpoints.

v v

v v

λ2 λb

λb 1

+ + + -

- + - -

So

RG ,v (λ) =
λ2 + λb

λb + 1
.
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Ratios/fields

These ratios are rational maps S→ S. Given a particular λ, for our reduction to
work we need the following.

We need the ratios to be dense in the unit circle, i.e. we want

{RT ,v (λ) : T tree of bounded degree ∆ with deg(v) = 1}

to be dense in S.

We need exponentially fast implementation, i.e. we need an algorithm that,
given a P ∈ S and ε > 0, yields a rooted tree (T , v) such that

I T has its degree bounded by ∆ and deg(v) = 1;
I |RT ,v (λ)− P| < ε;
I the size of T is O(log(1/ε)).
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Ratios/fields

We prove

Lemma
Let ∆ ≥ 3 be an integer.

(a) Let b ∈
(
0, ∆−2

∆

]
be a rational, and λ ∈ Q[i ] ∩ S such that λ 6= ±1. Then

{RT ,v (λ) : T tree bounded degree ∆ with deg(v) = 1}

is dense in S.

(b) Let b ∈
(

∆−2
∆ , 1

)
be a rational. Then

{RT ,v (λ) : T tree bounded degree ∆ with deg(v) = 1}

is dense in S for a dense set of complex numbers in λ ∈ Q[i ] ∩ I∆(b).

Lemma
Density implies an algorithm for exponentially fast implementation.
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Graph constructions

Suppose we have a rooted graph (G , v) with ratio RG ,v (λ).

G

v

We construct a new graph G̃ by attaching k disjoint copies of G to a new root w .

G G G G

w

We have RG̃ ,w (λ) = fk,λ(RG ,v (λ)), where

fk,λ(z) = λ

(
z + b

bz + 1

)k

.
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Graph constructions

Let fλ(z) = fλ,1(z) = λ
(

z+b
bz+1

)
. Then the ratio of a path on n vertices is

f ◦nλ (1)

If (G , v) is a rooted graph with ratio µ = RG ,v (λ) then the ratio is

G G G G G G G G

f ◦nµ (1)

If (G1, v1) . . . (Gn, vn) are rooted graphs with ratios µ1, . . . , µn then

G1 G2 G3 G4 Gn−3 Gn−2 Gn−1 Gn

(fµn ◦ · · · ◦ fµ1 ) (1)
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The Möbius transformation fµ(z) = µ
(

z+b
bz+1

)

1 − 2b2fµ is elliptic fµ is hyperbolic

If µ lies in the red arc then
fµ is conjugate to a rotation z 7→ e iθz

If µ lies in the blue arc then fµ
is conjugate to a map of the

form z 7→ a · z for some a ∈ (0, 1)
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Zeros imply density (easy version)

Suppose G is a graph and λ0 a parameter such that ZG (λ0) = 0.

Then arbitrarily close to λ0 there is a parameter λ1 with a rooted tree (T , v)
such that, ∆(G ) ≥ ∆(T ), deg(v) = 1 and RT ,v (λ1) = −1.

There is an arc A around λ1 such that for all µ ∈ RT ,v (A) the map fµ is
elliptic.

A

RT ,v (A)
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Zeros imply density (easy version)

Suppose G is a graph and λ0 a parameter such that ZG (λ0) = 0.

Then arbitrarily close to λ0 there is a parameter λ1 with a rooted tree (T , v)
such that, ∆(G ) ≥ ∆(T ), deg(v) = 1 and RT ,v (λ1) = −1.

There is an arc A around λ1 such that for all µ ∈ RT ,v (A) the map fµ is
elliptic.

Lemma

If b ∈ (0, 1) ∩Q and µ ∈ Q[i ] ∩ S such that µ 6= −1 and fµ is elliptic, then fµ is
conjugate to an irrational rotation.

So (for A small enough) for every λ ∈ A ∩Q[i ] with λ 6= λ1 the set

{f ◦nRT,v (λ)(1) : n ≥ 1}

is dense in S.
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Zeros imply density (easy version)

Recall that {f ◦nRT,v (λ)(1) : n ≥ 1} are ratios of graphs of the form:

T T T T T T T T

f ◦nRT,v (λ)(1)

If these are dense in S then ratios of the following graphs are also dense in S:

T T T T T T T T

(fλ ◦ f ◦nRT,v (λ))(1)
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Zeros imply density for all λ ∈ Q[i ] ∩ S \ {±1}
If b ∈

(
0, ∆−2

∆

]
and λ ∈ Q[i ] ∩ S \ {±1} we can find a rooted tree (T , v) with

∆(T ) ≤ ∆ and deg(v) ≤ ∆− 2 with its ratio close enough to −1.

f n1

k1,λ

f n2

k2,µ1

λ

µ1

µ2
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Density implies exponentially fast implementation

If ratios are dense in S we can find two trees (T1, v1) and (T2, v2) with ratios µ1

and µ2 such that fµ1 , fµ2 are hyperbolic but close to parabolic/elliptic.

µ1µ2

We choose these parameters such that the attracting fixed points P1 and P2 of fµ1

and fµ2 satisfy 1/2 < f ′µi
(Pi ) < 1.
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Density implies exponentially fast implementation

Lemma
Let I be the small arc between the fixed points P1 and P2. Given any P ∈ I and
ε > 0 we can find indices i1, . . . , iN ∈ {1, 2} such that∣∣∣(fµiN

◦ · · · ◦ fµi1
)(1)− P

∣∣∣ < ε

with N = O(log(1/ε)).

P1

P2

Pjotr Buys Ising Model June 2021 26 / 29



Density implies exponentially fast implementation

Lemma
Let I be the small arc between the fixed points P1 and P2. Given any P ∈ I and
ε > 0 we can find indices i1, . . . , iK ∈ {1, 2} such that∣∣∣(fµiN

◦ · · · ◦ fµi1
)(1)− P

∣∣∣ < ε

with N = O(log(1/ε)).

The tree with ratio (fµiN
◦ · · · ◦ fµi1

)(1) has size at most

max{|V (T1)|, |V (T2)|} · N = O(log(1/ε)).

When λ is in an arc where zeros are dense, the map f∆−1,λ is expanding on S.
This means that there is a fixed M such that f M∆−1,λ(I ) = S. With this we can lift
the implementation on points on I to arbitrary points in S with maps of the form

(f M∆−1,λ ◦ fµiN
◦ · · · ◦ fµi1

)(1)

belonging to trees of size (∆− 1)M · O(log(1/ε)) = O(log(1/ε)).
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Summary

{λ ∈ C : ZG (λ) = 0 for some G ∈ G∆}

=

{λ ∈ S : {RG ,v (λ) : G ∈ G∆} is dense in S}

=

{λ ∈ Q[i ] : approximating ZG (λ) for G ∈ G∆ is #P-hard}

=

{λ ∈ C : {RG ,v : G ∈ G∆} is not normal around λ}.
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