Lee-Yang zeros and the complexity of the ferromagnetic Ising Model on bounded-degree graphs

Pjotr Buys ${ }^{1}$ Andreas Galanis ${ }^{2}$ Viresh Patel ${ }^{1} \quad$ Guus Regts 1
${ }^{1}$ Korteweg de Vries Institute for Mathematics
University of Amsterdam
${ }^{2}$ Department of Computer Science
University of Oxford

June 2021

Very short summary

Values for which the Ising partition function is zero.

Values for which approximating the Ising partition function is \#P-hard.

The Ising Model

Wilhelm Lenz (1888-1957)

Ernst Ising (1900-1998)

The Ising Model

- For a graph $G=(V, E)$ a configuration is a map $\sigma: V \rightarrow\{+,-\}$.
- Let $b \in(0,1)$ and $\lambda \geq 1$, we define the weight of a configuration to be

$$
W_{\sigma}(\lambda, b)=\lambda^{n_{+}(\sigma)} b^{\delta(\sigma)},
$$

where $n_{+}(\sigma)$ is the number of vertices assigned + and $\delta(\sigma)$ the number of edges with different spins.

- The probability of a certain configuration σ is $W_{\sigma}(\lambda, b) / Z$, where

$$
Z=Z(\lambda, b)=\sum_{\sigma: V \rightarrow\{+,-\}} W_{\sigma}(\lambda, b)=\sum_{\sigma: V \rightarrow\{+,-\}} \lambda^{n_{+}(\sigma)} b^{\delta(\sigma)} .
$$

Example

Example

$Z_{G}(\lambda, b)=\lambda^{3}+3 b^{2} \lambda^{2}+3 b^{2} \lambda+1$

Approximating $Z_{G}(\lambda, b)$

Let $\mathbb{Q}[i]=\{z \in \mathbb{C}: \operatorname{re}(z), \operatorname{im}(z) \in \mathbb{Q}\}$.
Let $\lambda \in \mathbb{Q}[i], b \in(0,1) \cap \mathbb{Q}, K \in \mathbb{Q} \geq 1$ and $\Delta \in \mathbb{Z}_{\geq 3}$.
We consider the following problems.
Name \#IsingNorm (λ, b, Δ, K).
Instance A graph $G=(V, E)$ with maximum degree $\leq \Delta$.
Output If $Z_{G}(\lambda, b)=0$, the algorithm may output any rational. Otherwise, it must return a rational \widehat{N} such that $\widehat{N} / K \leq\left|Z_{G}(\lambda, b)\right| \leq K \widehat{N}$.
and for $\rho \in \mathbb{Q} \geq 0$
Name \# $\operatorname{lsing} \operatorname{Arg}(\lambda, b, \Delta, \rho)$.
Instance A graph $G=(V, E)$ with maximum degree $\leq \Delta$.
Output If $Z_{G}(\lambda, b)=0$, the algorithm may output any rational. Otherwise, it must return a rational \widehat{A} such that $|\widehat{A}-a| \leq \rho$ for some $a \in \arg \left(Z_{G}(\lambda, b)\right)$.

Approximating $Z_{G}(\lambda, b)$

Name \#IsingNorm (λ, b, Δ, K).
Instance A graph $G=(V, E)$ with maximum degree $\leq \Delta$.
Output If $Z_{G}(\lambda, b)=0$, the algorithm may output any rational. Otherwise, it must return a rational \widehat{N} such that $\widehat{N} / K \leq\left|Z_{G}(\lambda, b)\right| \leq K \widehat{N}$.
and
Name $\# \operatorname{lsing} \operatorname{Arg}(\lambda, b, \Delta, \rho)$.
Instance A graph $G=(V, E)$ with maximum degree $\leq \Delta$.
Output If $Z_{G}(\lambda, b)=0$, the algorithm may output any rational. Otherwise, it must return a rational \widehat{A} such that $|\widehat{A}-a| \leq \rho$ for some $a \in \arg \left(Z_{G}(\lambda, b)\right)$.

A fully polynomial time approximation scheme (FPTAS) for approximating $Z_{G}(\lambda, b)$ is an algorithm that for any n-vertex graph G of maximum degree at most Δ and any rational $\varepsilon>0$ solves both problems $\# \operatorname{lsingNorm}(\lambda, b, \Delta, 1+\varepsilon)$ and \#lsing $\operatorname{Arg}(\lambda, b, \Delta, \varepsilon)$ in time polynomial in n / ε.

Approximation schemes and Lee-Yang zeros

The Lee-Yang theorem (1952) states that for fixed $b \in(0,1)$ the complex zeros of $Z_{G}(\lambda, b)$ for any graph G lie on the unit circle.
Peters and Regts showed in 2018 that the situation for graphs with with maximum degree $\leq \Delta$ is as follows:

$$
0<b \leq 1-2 / \Delta
$$

$$
1-2 / \Delta<b<1
$$

Zeros are dense and contained in the red arcs

Approximation schemes and Lee-Yang zeros

- Liu, Sinclair, and Srivastava (2018) obtained an FPTAS for approximating $Z_{G}(\lambda, b)$ for $\lambda \notin \mathbb{S}$.
- Using the methods by Barvinok (2017) and Patel and Regts (2017) Peters and Regts obtained an FPTAS for approximating $Z_{G}(\lambda, b)$ for $1-2 / \Delta<b<1$ and $\lambda \in \mathbb{S} \backslash I_{\Delta}(b)$.
Our main result is the following:

Theorem (B., Galanis, Patel, Regts)

Let $\Delta \geq 3$ be an integer and let $K=1.001$ and $\rho=\pi / 40$.
(a) Let $b \in\left(0, \frac{\Delta-2}{\Delta}\right]$ be a rational, and $\lambda \in \mathbb{Q}[i] \cap \mathbb{S}$ such that $\lambda \neq \pm 1$. Then the problems \#IsingNorm (λ, b, Δ, K) and \#IsingArg $(\lambda, b, \Delta, \rho)$ are \#P-hard.
(b) Let $b \in\left(\frac{\Delta-2}{\Delta}, 1\right)$ be a rational. Then the collection of complex numbers $\lambda \in \mathbb{Q}[i] \cap I_{\Delta}(b)$ for which $\# \operatorname{lsingNorm}(\lambda, b, \Delta, K)$ and $\# \operatorname{lsing} \operatorname{Arg}(\lambda, b, \Delta, \rho)$ are \#P-hard is dense in the arc $I_{\Delta}(b)$.

\#P-Hardness

- \#P is a complexity class of counting problems.
- What is the value of the permanent of a given matrix consisting of 1 s and 0 s?
- How many perfect matchings are there in a given bipartite graph?
- \#IsingNorm (λ, b, Δ, K) being \#P-hard implies that if there is a polynomial time algorithm to solve $\# \operatorname{lsing} \operatorname{Norm}(\lambda, b, \Delta, K)$, then any problem in $\# \mathrm{P}$ can be solved in polynomial time.
- We show that a polynomial time algorithm for $\# \operatorname{lsing} \operatorname{Norm}(\lambda, b, \Delta, K)$ can be used to solve the problem of calculating $Z_{G}(\lambda, \hat{b})$ exactly given a 3 -regular graph G in polynomial time.
- This problem is known to be \#P-hard [Kowalczyk-Cai '11].

Very rough idea of the reduction

This \hat{b} is chosen to have the property that $Z_{G}(\lambda, \hat{b})$ cannot be zero.
b

\hat{b}

Very rough idea of the reduction

We transform the input graph G in multiple ways. Involving steps like:

- We replace edges of G by paths with gadgets to simulate edge activity \hat{b}.

- We probe degree 2 vertices with multiple gadgets.

A polynomial amount of applications of \#IsingNorm (λ, b, Δ, K) to these transformed graphs allow us to calculate $Z_{G}(\lambda, \hat{b})$ exactly.

Very rough idea of the reduction

- We need our gadgets to exist within the family of rooted trees with bounded degree Δ and root degree 1 .
- We need our gadgets to be small compared to the size of the input graph G.

Ratios/fields

- Recall that

$$
Z_{G}(\lambda)=\sum_{\sigma: V \rightarrow\{+,-\}} \lambda^{\left|n_{+}(\sigma)\right|} b^{|\delta(\sigma)|}
$$

- For a graph G and a vertex $v \in V$ we define

$$
Z_{G, v^{+}}(\lambda):=\sum_{\sigma: V \rightarrow\{+,-\} ; \sigma(v)=+} \lambda^{\left|n_{+}(\sigma)\right|} b^{|\delta(\sigma)|}
$$

and we define $Z_{G, v^{-}}(\lambda)$ analogously.

- We then define the ratio

$$
R_{G, v}(\lambda)=\frac{Z_{G, v^{+}}(\lambda)}{Z_{G, v^{-}}(\lambda)}
$$

- Note:

$$
Z_{G}(\lambda)=Z_{G, v^{*}}(\lambda)+Z_{G, v^{-}}(\lambda)=0 \quad \Leftrightarrow \quad R_{G, v}(\lambda)=-1
$$

Ratios/fields: Example

$$
R_{G, v}(\lambda)=\frac{Z_{G, v^{*}}(\lambda)}{Z_{G, v^{-}}(\lambda)}
$$

Example

Let G be an edge and v one of its endpoints.

So

$$
R_{G, v}(\lambda)=\frac{\lambda^{2}+\lambda b}{\lambda b+1} .
$$

Ratios/fields

These ratios are rational maps $\mathbb{S} \rightarrow \mathbb{S}$. Given a particular λ, for our reduction to work we need the following.

- We need the ratios to be dense in the unit circle, i.e. we want

$$
\left\{R_{T, v}(\lambda): T \text { tree of bounded degree } \Delta \text { with } \operatorname{deg}(v)=1\right\}
$$

to be dense in \mathbb{S}.

- We need exponentially fast implementation, i.e. we need an algorithm that, given a $P \in \mathbb{S}$ and $\epsilon>0$, yields a rooted tree (T, v) such that
- T has its degree bounded by Δ and $\operatorname{deg}(v)=1$;
- $\left|R_{T, v}(\lambda)-P\right|<\epsilon ;$
- the size of T is $\mathcal{O}(\log (1 / \epsilon))$.

Ratios/fields

We prove

Lemma

Let $\Delta \geq 3$ be an integer.
(a) Let $b \in\left(0, \frac{\Delta-2}{\Delta}\right]$ be a rational, and $\lambda \in \mathbb{Q}[i] \cap \mathbb{S}$ such that $\lambda \neq \pm 1$. Then

$$
\left\{R_{T, v}(\lambda): T \text { tree bounded degree } \Delta \text { with } \operatorname{deg}(v)=1\right\}
$$

is dense in \mathbb{S}.
(b) Let $b \in\left(\frac{\Delta-2}{\Delta}, 1\right)$ be a rational. Then

$$
\left\{R_{T, v}(\lambda): T \text { tree bounded degree } \Delta \text { with } \operatorname{deg}(v)=1\right\}
$$

is dense in \mathbb{S} for a dense set of complex numbers in $\lambda \in \mathbb{Q}[i] \cap I_{\Delta}(b)$.

Lemma

Density implies an algorithm for exponentially fast implementation.

Graph constructions

Suppose we have a rooted graph (G, v) with ratio $R_{G, v}(\lambda)$.

We construct a new graph \tilde{G} by attaching k disjoint copies of G to a new root w.

We have $R_{\tilde{G}, w}(\lambda)=f_{k, \lambda}\left(R_{G, v}(\lambda)\right)$, where

$$
f_{k, \lambda}(z)=\lambda\left(\frac{z+b}{b z+1}\right)^{k}
$$

Graph constructions

Let $f_{\lambda}(z)=f_{\lambda, 1}(z)=\lambda\left(\frac{z+b}{b z+1}\right)$. Then the ratio of a path on n vertices is

$$
f_{\lambda}^{\circ n}(1)
$$

If (G, v) is a rooted graph with ratio $\mu=R_{G, v}(\lambda)$ then the ratio is

If $\left(G_{1}, v_{1}\right) \ldots\left(G_{n}, v_{n}\right)$ are rooted graphs with ratios μ_{1}, \ldots, μ_{n} then

$$
\begin{equation*}
\left(f_{\mu_{n}} \circ \cdots \circ f_{\mu_{1}}\right) \tag{1}
\end{equation*}
$$

The Möbius transformation $f_{\mu}(z)=\mu\left(\frac{z+b}{b z+1}\right)$

f_{μ} is elliptic

If μ lies in the red arc then f_{μ} is conjugate to a rotation $z \mapsto e^{i \theta} z$

If μ lies in the blue arc then f_{μ} is conjugate to a map of the form $z \mapsto a \cdot z$ for some $a \in(0,1)$

Zeros imply density (easy version)

- Suppose G is a graph and λ_{0} a parameter such that $Z_{G}\left(\lambda_{0}\right)=0$.
- Then arbitrarily close to λ_{0} there is a parameter λ_{1} with a rooted tree (T, v) such that, $\Delta(G) \geq \Delta(T), \operatorname{deg}(v)=1$ and $R_{T, v}\left(\lambda_{1}\right)=-1$.
- There is an $\operatorname{arc} A$ around λ_{1} such that for all $\mu \in R_{T, v}(A)$ the map f_{μ} is elliptic.

Zeros imply density (easy version)

- Suppose G is a graph and λ_{0} a parameter such that $Z_{G}\left(\lambda_{0}\right)=0$.
- Then arbitrarily close to λ_{0} there is a parameter λ_{1} with a rooted tree (T, v) such that, $\Delta(G) \geq \Delta(T), \operatorname{deg}(v)=1$ and $R_{T, v}\left(\lambda_{1}\right)=-1$.
- There is an arc A around λ_{1} such that for all $\mu \in R_{T, v}(A)$ the map f_{μ} is elliptic.

Lemma

If $b \in(0,1) \cap \mathbb{Q}$ and $\mu \in \mathbb{Q}[i] \cap \mathbb{S}$ such that $\mu \neq-1$ and f_{μ} is elliptic, then f_{μ} is conjugate to an irrational rotation.

- So (for A small enough) for every $\lambda \in A \cap \mathbb{Q}[i]$ with $\lambda \neq \lambda_{1}$ the set

$$
\left\{f_{R_{T, v}(\lambda)}^{\circ n}(1): n \geq 1\right\}
$$

is dense in \mathbb{S}.

Zeros imply density (easy version)

Recall that $\left\{f_{R_{T, v}(\lambda)}^{\circ n}(1): n \geq 1\right\}$ are ratios of graphs of the form:

$$
f_{R_{T, v}(\lambda)}^{\circ n}(1)
$$

If these are dense in \mathbb{S} then ratios of the following graphs are also dense in \mathbb{S} :

Zeros imply density for all $\lambda \in \mathbb{Q}[i] \cap \mathbb{S} \backslash\{ \pm 1\}$

If $b \in\left(0, \frac{\Delta-2}{\Delta}\right]$ and $\lambda \in \mathbb{Q}[i] \cap \mathbb{S} \backslash\{ \pm 1\}$ we can find a rooted tree (T, v) with $\Delta(T) \leq \Delta$ and $\operatorname{deg}(v) \leq \Delta-2$ with its ratio close enough to -1 .

Density implies exponentially fast implementation

If ratios are dense in \mathbb{S} we can find two trees $\left(T_{1}, v_{1}\right)$ and $\left(T_{2}, v_{2}\right)$ with ratios μ_{1} and μ_{2} such that $f_{\mu_{1}}, f_{\mu_{2}}$ are hyperbolic but close to parabolic/elliptic.

We choose these parameters such that the attracting fixed points P_{1} and P_{2} of $f_{\mu_{1}}$ and $f_{\mu_{2}}$ satisfy $1 / 2<f_{\mu_{i}}^{\prime}\left(P_{i}\right)<1$.

Density implies exponentially fast implementation

Lemma

Let I be the small arc between the fixed points P_{1} and P_{2}. Given any $P \in I$ and $\epsilon>0$ we can find indices $i_{1}, \ldots, i_{N} \in\{1,2\}$ such that

$$
\left|\left(f_{\mu_{i_{N}}} \circ \cdots \circ f_{\mu_{i_{1}}}\right)(1)-P\right|<\epsilon
$$

with $N=\mathcal{O}(\log (1 / \epsilon))$.

Density implies exponentially fast implementation

Lemma

Let I be the small arc between the fixed points P_{1} and P_{2}. Given any $P \in I$ and $\epsilon>0$ we can find indices $i_{1}, \ldots, i_{K} \in\{1,2\}$ such that

$$
\left|\left(f_{\mu_{i_{N}}} \circ \cdots \circ f_{\mu_{i_{1}}}\right)(1)-P\right|<\epsilon
$$

with $N=\mathcal{O}(\log (1 / \epsilon))$.
The tree with ratio $\left(f_{\mu_{i_{N}}} \circ \cdots \circ f_{\mu_{i_{1}}}\right)(1)$ has size at most

$$
\max \left\{\left|V\left(T_{1}\right)\right|,\left|V\left(T_{2}\right)\right|\right\} \cdot N=\mathcal{O}(\log (1 / \epsilon)) .
$$

When λ is in an arc where zeros are dense, the map $f_{\Delta-1, \lambda}$ is expanding on \mathbb{S}. This means that there is a fixed M such that $f_{\Delta-1, \lambda}^{M}(I)=\mathbb{S}$. With this we can lift the implementation on points on $/$ to arbitrary points in \mathbb{S} with maps of the form

$$
\left(f_{\Delta-1, \lambda}^{M} \circ f_{\mu_{i_{N}}} \circ \cdots \circ f_{\mu_{i_{1}}}\right)(1)
$$

belonging to trees of size $(\Delta-1)^{M} \cdot \mathcal{O}(\log (1 / \epsilon))=\mathcal{O}(\log (1 / \epsilon))$.

Summary

$$
\begin{gathered}
\left.\overline{\left\{\lambda \in \mathbb{C}: Z_{G}(\lambda)=\right.} 0 \text { for some } G \in \mathcal{G}_{\Delta}\right\} \\
= \\
\left\{\overline{\left\{\lambda \in \mathbb{S}:\left\{R_{G, v}(\lambda): G \in \mathcal{G}_{\Delta}\right\} \text { is dense in } \mathbb{S}\right\}}\right. \\
= \\
\left\{\lambda \in \mathbb{Q}[i]: \text { approximating } Z_{G}(\lambda) \text { for } G \in \mathcal{G}_{\Delta} \text { is \#P-hard }\right\} \\
\left\{\lambda \in \mathbb{C}:\left\{R_{G, v}: G \in \mathcal{G}_{\Delta}\right\} \text { is not normal around } \lambda\right\} .
\end{gathered}
$$

Lee-Yang zeros and the complexity of the ferromagnetic Ising Model on bounded-degree graphs

Pjotr Buys ${ }^{1}$ Andreas Galanis ${ }^{2}$ Viresh Patel ${ }^{1} \quad$ Guus Regts 1
${ }^{1}$ Korteweg de Vries Institute for Mathematics
University of Amsterdam
${ }^{2}$ Department of Computer Science
University of Oxford

June 2021

