<u>MATH 119</u>

<u>TEST 4B</u> Key (*Chapter 5, 7.1, 7.3, 6.3*) NAME:

Class ID #:

1) Values of a function $W(t)$ are given in the table to the right							
The values of a function $w(t)$ have viven in the fame to the from	t	1	1.4	1.8	2.2	2.6	3
1) values of a function $W(t)$ are given in the table to the right.	W(t)	25	28	35	45	50	60
Left sum: 73.2							
Right sum: 87.5 Average: 80.2							
b) For your estimate in part (<i>a</i>), what is <i>n</i> ? what is Δt ?							
$\Delta = 0.4$ and n	<i>i</i> = 5						
2) Estimate the value of the definite integral $\int_{1}^{3} (\frac{6}{x}) dx$ by using $\frac{1}{x}$	n = 4 and	com	putin	g:			
$\begin{array}{c c} x \\ f(x) = \frac{6}{x} \end{array}$							
a) The left hand sum $= 7.7$							
b) The right hand sum $= 5.7$							
b) The right hand sum $= 5.7$							

100

- 4) Suppose that the velocity of an object is given by $v(t) = -t^2 + 8t + 10$, where *t* is in seconds. Estimate the distance traveled by the object during the first 5 seconds (that is, between t = 0 and t = 5) using n = 5
 - a) the left sum: **100**
 - b) The right sum 115

5) Find an antiderivative F(x) with $F'(x) = e^{2x}$ and F(0) = 4

$$F(x) = \frac{1}{2} \cdot e^{2x} + \frac{7}{2}$$

6) Evaluate the indefinite integrals of:

_

a)
$$\int (x^{3} + \frac{2}{x^{3}} - 8)dx = \frac{x^{4}}{4} - \frac{1}{x^{2}} - 8x + c$$

b)
$$\int (\sqrt[3]{x} + 2)dx = \frac{3}{4}x^{4/3} + 2x + c$$

c)
$$\int (x^{2} - \frac{3}{2}\sqrt{x} + \frac{1}{\sqrt[3]{x^{4}}})dx$$

$$= \frac{1}{3}x^{3} - x^{3/2} - \frac{3}{x^{1/3}} + c$$

7) Evaluate the definite integrals of:
a)
$$\int \frac{e}{1} \frac{6}{x} dx = 6$$

b)
$$\int \frac{2}{1} (6x^{3} + 2)dx = 24.5$$

c)
$$\int \frac{1}{-2} (2 - x - x^{2})dx = 4.5$$

d)
$$\int \frac{e}{1} (x - \frac{1}{x} dx = 2.19)$$

8) Find the area between y = 4x and $y = x^2 + 3$ and sketch the region bounded by the graphs

9) Find the area between $y = x^2 - 4x + 3$ and $y = -x^2 + 2x + 3$ and sketch the region bounded by the graphs

Area = 9

10) Find the area between $y = x^2 - 2x$ and the x-axis in [0, 3] and sketch the region bounded by the graphs

11) The marginal revenue for the price of tickets is given by R' = 10q - 50 dollars per ticket, where q is the number of tickets. Find the total revenue from the sale of tickets for the first 20 tickets.

\$1000

12) What should *A* (*annuity*) per year be so that the amount of a continuous money flow over 10 years at interest rate 5%, compounded continuously, will be \$ 20,000?

\$1541.49

13) Find the present value of an investment over 15 years period if there is a continuous money flow of \$1000 per year and the current interest rate is 8% compounded continuously

\$8735.07