1) Each of the function in the following table is increasing or decreasing in different way. Which of the graphs below best fits each function

Graph A

Graph B

Graph C

Graph D

\boldsymbol{t}	$\boldsymbol{g}(\boldsymbol{t})$	$\boldsymbol{h}(\boldsymbol{t})$	$\boldsymbol{k}(\boldsymbol{t})$	$\boldsymbol{f}(\boldsymbol{t})$
1	20	30	20	30
2	22	26	30	22
3	26	20	38	16
4	32	12	44	12
5	40	2	48	9
Graph				

2) Determine whether each of the following tables of values could correspond to a linear function or exponential function, or neither. If it is linear or exponential, find the formula for the function and then find it at $t=10$.

\boldsymbol{t}	$\boldsymbol{g}(\boldsymbol{t})$	$\boldsymbol{h}(\boldsymbol{t})$	$\boldsymbol{k}(\boldsymbol{t})$
0	12	20	20
1	10	19	22
2	8	18.05	24.2
3	6	17.1475	26.62
Formula			
Estimate each at $\boldsymbol{t}=\mathbf{1 0}$			

3) Given the following functions, find the graph that best represnts each function:

function	$P=P_{\circ}(1.02)^{t}$	$P=P_{\circ}(0.97)^{t}$	$P=P_{\circ}+20 t$
Best represented by Graph			

Graph A

Graph B

Graph C

Graph D

Graph E
4) Suppose a town has a population of 10,000 . Fill in the values of the population in the table if:
a) each year, the town's population grows at a rate of 500 people per year.
b) each year, the town's population grows at a rate of 5% per year.

Year	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Population grows at a rate of 500 per yr.	10,000			
Population grows at a rate of 5\% per yr.	10,000			

5) The price P of an item increased from $\$ 6,000$ in 1970 to $\$ 9,000$ in 1990 . Let t be the number of years since 1970 (i.e. $t=0$ corresponds to the year 1970).
a) Find the equation for P assuming that the increase in price has been linear.
b) Find the equation for P assuming the increase in price has been exponential. [Hint: use $P=P_{0} a^{t}$ and find the value of a]
c) Fill in the following table

\boldsymbol{t}	Price \boldsymbol{P} (Linear Growth)	Price \boldsymbol{P} (Exponential Growth)
0	$\$ 6,000$	$\$ 6,000$
20		
30		

6) Give a possible formula for the following function:

7) The total cost C of producing q units of a certain item is tabulated below :

Total cost: C	20	25	30	35
Number of units produced: q	0	2	4	6

a) What is the fixed cost?
b) Find the linear equation which expresses the total cost C as a function of q.
c) Find the total cost for producing $q=10$ units.
d) Find the linear equation which expresses q as a function of the total cost C. [Solve for q using the equation you obtained in part b.]
e) How many units can be produced at a total cost of $\$ 40$?
8) A certain hand-held calculator is being sold by the manufacturer at a price of $\$ 90$ per unit. The fixed cost for production is $\$ 120,000$ and each unit costs $\$ 30$ to make. Let q be the number of units sold.
a) Write the following:
revenue function $R(q)$:
cost function $C(q)$:
profit function $P(q)$:
b) How many units the manufacturer needs to sell to break even?
9) A movie theater owner found that when the price for a ticket was $\$ 25$, the average number of customers per night was 500 . When the price was reduced to $\$ 20$, the average number of customers went up to 650 .
a) Find the formula for the demand function, assuming that it is linear
b) Find the number of customers when the price is $\$ 5$
10) One of the following tables represents supply curve and the other represents demand curve:

q	10	22	35	45
p	5	10	15	20

q	40	32	25	15
p	5	10	15	20

a) At a price of $\$ 10$, how many items would the consumers purchase? \qquad
b) At a price of $\$ 10$, how many items would the manufactures supply? \qquad
c) Will the market push the prices higher or lower than \$10? Why?
11) Draw a possible graph for the following functions (just show the shape of the graph):

12. Solve for t for each of the following equations (you must show your work):
a) $5 e^{3 t}=8 e^{2 t}$
b) $6\left(5^{t}\right)=8\left(2^{t}\right)$
c) $\ln t=2$
d) $\ln (3 t-1)-\ln (2 t+1)=0$

Algebra Review Problems:

1. Solve for $x: \frac{1}{x-2}=\frac{2}{x+4}+\frac{2 x-1}{x^{2}+2 x-8}$
2. Solve by any method: $\quad 4 x+y=-1$ and $x-2 y=11$
3. Solve for x (use the quadratic formula): $x^{2}+4 x+1=0$
4. After a 20% reduction, a refrigerator is on sale at $\$ 480$. What was the original price?

5. Using information provided in the above figure, find the coordinates of point:

Pont $A:$	Point B:
Point C:	Point D:

