1) Each of the function in the following table is increasing or decreasing in different way. Which of the graphs below best fits each function

Graph A

Graph B

Graph C

Graph D

\boldsymbol{t}	$\boldsymbol{g}(\boldsymbol{t} \boldsymbol{)}$	$\boldsymbol{h}(\boldsymbol{t})$	$\boldsymbol{k}(\boldsymbol{t})$	$\boldsymbol{f}(\boldsymbol{t})$
1	20	2	25	12
2	30	4	23	22
3	42	6	21	30
4	58	8	19	35
5	75	10	17	37
Graph	\boldsymbol{D}	\boldsymbol{C}	\boldsymbol{A}	\boldsymbol{B}

2) Determine whether each of the following tables of values could correspond to a linear function or exponential function, or neither. If it is linear or exponential, find the formula for the function and define it as: Increasing, Decreasing, Growing, or Decaying.

t	$g(t)$	$h(t)$	$k(t)$
0	12	10	30
1	9	14	25.5
2	6	19.6	21.675
3	3	27.44	18.42375
Function Type: Exponential, Linear or Neither	linear	Exp.	Exp.
Increase, Decrease Decay, Growth?	Decrease	Growth	Decay.
Formula	$y=-3 t+12$	$h=10(1.4)^{t}$	$k=30(0.85)^{t}$
Estimate each at $t=10$	-18	289.25	5.906

3) A $\$ 30,000$ truck has a resale value of $\$ 10,000$ ten years after it was purchased.
4) Find the formula of the value of the truck as a function of time
5) Sketch a graph of the value
6) When will the value of the truck be $\$ 0$?
7) $V=-2000 t+30,000$
8) $t=15$ years

9) Suppose a town has a population of 2000 . Fill in the values of the population in the table if:
a) each year, the town has an absolute growth of 50 people per year.
b) each year, the town has a relative growth of 10% per year.

Year	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Population (absolute rate of 50)	2000	2050	2100	2150
Population (relative rate of 10%)	2000	2200	2420	2662

5) Assume that the price of an airline ticket rose from 200 in 1970 to 400 in 1990 (20 years later). Let t be the number of years since 1970.
a) Find the equation if the increase in the price has been linear

$$
P=10 t+200
$$

b) Find the equation if the price has been exponential (use $P=P_{0} a^{t}$ and find the value of a)

$$
P=200(1.035)^{t}
$$

c) Fill the following table

\mathbf{t}	Linear Growth price	Exponential Growth price
0	200	200
20	400	400
30	$\mathbf{5 0 0}$	$\mathbf{5 6 5 . 6 8}$

6) Give a possible formula for the following function:

$$
P=50 .(0887)^{t}
$$

7) According to a survey, the number of people (N) attending concerts in an arena is given in the following table:

Price (\boldsymbol{P})	10	15	20	25
Number of people (\boldsymbol{N})	200	150	100	50

a) Find the linear equation which gives the price as a function of number of people (price depends on number of people)

$$
P=-0.1 N+30
$$

b) Find the linear equation which gives the number of people as a function of price (number of people depends on price)

$$
N=-10 P+300
$$

8) Suppose that the demand and Supply function for a product is given by:

$$
q=-p+8 \quad \text { and } \quad q=2 p+2
$$

$$
\text { where } p \text { is the unit price in } \$ \text { of the product. }
$$

a) Find the equilibrium point and the quantity of the product

$$
p=\$ 2 \text { and } q=6 \text { units }
$$

b) graph the two functions, lable the demand and supply function and show the shortage and surplus area

9) Solve for t for each of the following equations (you must show your work):
a) $3 e^{4 t}=2 e^{2 t}$

$$
t=-0.2027
$$

b) $5\left(3^{t}\right)=2\left(6^{t}\right)$

$$
t=1.3219
$$

c) $\ln (t-1)=0$

$$
t=2
$$

d) $\ln (2 t+1)+\ln (2 t-1)=0$

$$
\boldsymbol{t}=\frac{1}{\sqrt{2}}
$$

Algebra Review Problems:

1. Solve for x : $\frac{2}{x^{2}-1}-\frac{2}{x+1}=\frac{-1}{1-x}$
$x=1$ then there is No Solution
2. Solve for x (use the quadratic formula): $x^{2}-8 x=-10$

$$
x=4 \pm \sqrt{6}
$$

3. Graph the following function: $y=5-x^{2}$

4. Find the x-intercept for: $y=-x^{2}+x+20$

$$
(-4,0) \&(5,0)
$$

5. Match the graphs with the equations:
a) $y=0.5 x+2$ is best represented by line: ...D..
b) $y=x-4$ is best represented by line: ... $\boldsymbol{B} \ldots$.
c) $y=-0.7 x+3$ is best represented by line: $\ldots \boldsymbol{A} \ldots \ldots$
d) $y=-x-4$ is best represented by line: ...C.....

