Graph A

Graph D

1) Each of the function in the following table is increasing or decreasing in different way. Which of the graphs below best

Graph C

	•		•	
t	g(t)	h(t)	k(t)	f(t)
1	20	2	25	12
2	30	4	23	22
3	42	6	21	30
4	58	8	19	35
5	75	10	17	37
Graph	D	C	A	В

2) Determine whether each of the following tables of values could correspond to a linear function or exponential function, or neither. If it is linear or exponential, find the formula for the function and define it as: Increasing, Decreasing, Growing, or Decaying.

caying.			
t	g(t)	h(t)	k(t)
0	12	10	30
1	9	14	25.5
2	6	19.6	21.675
3	3	27.44	18.42375
Function Type: Exponential, Linear or Neither	linear	Exp.	Exp.
Increase, Decrease Decay, Growth?	Decrease	Growth	Decay.
Formula	y = -3t + 12	$h = 10(1.4)^t$	$k = 30(0.85)^t$
Estimate each at $t = 10$	-18	289.25	5.906

3) A \$ 30,000 truck has a resale value of \$10,000 ten years after it was purchased.

Graph B

- 1) Find the formula of the value of the truck as a function of time
- 2) Sketch a graph of the value
- 3) When will the value of the truck be \$0?

1)
$$V = -2000t + 30,000$$

3)
$$t = 15 \ years$$

- 4) Suppose a town has a population of 2000. Fill in the values of the population in the table if:
 - a) each year, the town has an absolute growth of 50 people per year.
 - b) each year, the town has a relative growth of 10% per year.

Year	0	1	2	3
Population (absolute rate of 50)	2000	2050	2100	2150
Population (relative rate of 10%)	2000	2200	2420	2662

- 5) Assume that the price of an airline ticket rose from 200 in 1970 to 400 in 1990 (20 years later). Let t be the number of years since 1970.
 - a) Find the equation if the increase in the price has been linear

$$P = 10t + 200$$

b) Find the equation if the price has been exponential (use $P = P_0 a^t$ and find the value of a)

$$P = 200(1.035)^t$$

c) Fill the following table

t	Linear Growth price	Exponential Growth price
0	200	200
20	400	400
30	500	565.68

6) Give a possible formula for the following function:

7) According to a survey, the number of people (N) attending concerts in an arena is given in the following table:

Price (P)	10	15	20	25
Number of people (N)	200	150	100	50

a) Find the linear equation which gives the price as a function of number of people (price depends on number of people)

$$P = -0.1N + 30$$

b) Find the linear equation which gives the number of people as a function of price (number of people depends on price)

$$N = -10P + 300$$

8) Suppose that the demand and Supply function for a product is given by:

$$q = -p + 8$$

$$q = 2p + 2$$

where p is the unit price in \$ of the product.

a) Find the equilibrium point and the quantity of the product

$$p = \$2$$
 and $q = 6$ units

b) graph the two functions, <u>lable</u> the demand and supply function and <u>show</u> the shortage and surplus area

9) Solve for *t* for each of the following equations (you must show your work):

a)
$$3e^{4t} = 2e^{2t}$$

$$t = -0.2027$$

b)
$$5(3^t) = 2(6^t)$$

$$t = 1.3219$$

c)
$$ln(t-1) = 0$$

$$t = 2$$

$$\frac{1}{d} ln(2t+1) + ln(2t-1) = 0$$

$$t = \frac{1}{\sqrt{2}}$$

Algebra Review Problems:

1. Solve for x: $\frac{2}{x^2 - 1} - \frac{2}{x + 1} = \frac{-1}{1 - x}$

x = 1 then there is No Solution

2. Solve for x (use the quadratic formula): $x^2 - 8x = -10$

$$x = 4 \pm \sqrt{6}$$

3. Graph the following function: $y = 5 - x^2$

4. Find the *x*-intercept for: $y = -x^2 + x + 20$

$$(-4,0) & (5,0)$$

- 5. Match the graphs with the equations:
 - a) y = 0.5x + 2 is best represented by line: ...**D**..
 - b) y = x 4 is best represented by line: ...**B**.....
 - c) y = -0.7x + 3 is best represented by line: ... A.....
 - d) y = -x 4 is best represented by line: ...C.....

