<u>TEST 1</u> (Sample A)

NAME: Class ID #:

1) Each of the function in the following table is increasing or decreasing in different way. Which of the graphs below best fits each function

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,			
Graph A		Graph B		Graph C		Graph D
]	t	g(t)	h(t)	k(t)	f(t)	7
	1	20	2	25	12	
	2	30	4	23	22	
-	3	42	6	21	30	
-	4	58	8	19	35	
	5	75	10	17	37	
	Graph					
		••••••	•••••		•••••	

2) Determine whether each of the following tables of values could correspond to a linear function or exponential function, or neither. If it is linear or exponential, find the formula for the function and define it as: Increasing, Decreasing, Growing, or Decaying.

t	g(t)	h(t)	k(t)
0	12	10	30
1	9	14	25.5
2	6	19.6	21.675
3	3	27.44	18.42375
Function Type: Exponential, Linear or Neither			
Increase, Decrease Decay, Growth?			
Formula			
Estimate each at $t = 10$			

- 3) A \$ 30,000 truck has a resale value of \$10,000 ten years after it was purchased.
 - 1) Find the formula of the value of the truck as a function of time
 - 2) Sketch a graph of the value
 - 3) When will the value of the truck be \$0?

4) Suppose a town has a population of 2000. Fill in the values of the population in the table if:

- a) each year, the town has an absolute growth of 50 people per year.
- b) each year, the town has a relative growth of 10% per year.

Year	0	1	2	3
Population (absolute rate of 50)	2000			
Population (relative rate of 10%)	2000			

5) Assume that the price of an airline ticket rose from 200 in 1970 to 400 in 1990 (20 years later). Let t be the number of years since 1970.

a) Find the equation if the increase in the price has been linear

b) Find the equation if the price has been exponential (use $P = P_0 a^t$ and find the value of a)

c) Fill the following table

t	Linear Growth price	Exponential Growth price
0	200	200
20	400	400
30		

6) Give a possible formula for the following function:

7) According to a survey, the number of people (N) attending concerts in an arena is given in the following table:

Price (P)	10	15	20	25
Number of people (N)	200	150	100	50

a) Find the linear equation which gives the price as a function of number of people (price depends on number of people)

b) Find the linear equation which gives the number of people as a function of price (number of people depends on price)

8) Suppose that the demand and Supply function for a product is given by: q = -p + 8 and $q = 2p + 2where p is the unit price in $ of the pro-$	oduct.
a) Find the equilibrium point and the quantity of the product	↑ p
b) graph the two functions, lable the demand and supply function and <u>show</u> the shortage and surplus area	q

9) Solve for *t* for each of the following equations (you must show your work): a) $3e^{4t} = 2e^{2t}$

b) $5(3^t) = 2(6^t)$

c) ln(t-1) = 0

 $\overline{d} ln(2t+1) + ln(2t-1) = 0$

1. Solve for x:
$$\frac{2}{x^2 - 1} - \frac{2}{x + 1} = \frac{-1}{1 - x}$$

2. Solve for *x* (use the quadratic formula): $x^2 - 8x = -10$

3. Graph the following function: $y = 5 - x^2$

4. Find the *x*-intercept for: $y = -x^2 + x + 20$

- 5. Match the graphs with the equations:
 - a) y = 0.5x + 2 is best represented by line:
 - b) y = x 4 is best represented by line:
 - c) y = -0.7x + 3 is best represented by line:
 - d) y = -x 4 is best represented by line:

