NAME:
Class ID \#:

1) Each of the function in the following table is increasing or decreasing in different way. Which of the graphs below best fits each function

Graph A

Graph B

Graph C

Graph D

\boldsymbol{t}	$\boldsymbol{g}(\boldsymbol{t} \boldsymbol{)}$	$\boldsymbol{h}(\boldsymbol{t} \boldsymbol{)}$	$\boldsymbol{k}(\boldsymbol{t})$	$\boldsymbol{f}(\boldsymbol{t})$
1	20	2	25	12
2	30	4	23	22
3	42	6	21	30
4	58	8	19	35
5	75	10	17	37
Graph				

2) Determine whether each of the following tables of values could correspond to a linear function or exponential function, or neither. If it is linear or exponential, find the formula for the function and define it as: Increasing, Decreasing, Growing, or Decaying.

\boldsymbol{t}	$\boldsymbol{g}(\boldsymbol{t} \boldsymbol{)}$	$\boldsymbol{h}(\boldsymbol{t})$	$\boldsymbol{k}(\boldsymbol{t})$
0	12	10	30
1	9	14	25.5
2	6	19.6	21.675
3	3	27.44	18.42375
Function Type: Exponential, Linear or Neither			
Increase, Decrease Decay, Growth?			
Formula			

3) A $\$ 30,000$ truck has a resale value of $\$ 10,000$ ten years after it was purchased.
4) Find the formula of the value of the truck as a function of time
5) Sketch a graph of the value
6) When will the value of the truck be $\$ 0$?

7) Suppose a town has a population of 2000 . Fill in the values of the population in the table if:
a) each year, the town has an absolute growth of 50 people per year.
b) each year, the town has a relative growth of 10% per year.

Year	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Population (absolute rate of 50)	2000			
Population (relative rate of 10%)	2000			

5) Assume that the price of an airline ticket rose from 200 in 1970 to 400 in 1990 (20 years later). Let t be the number of years since 1970.
a) Find the equation if the increase in the price has been linear
b) Find the equation if the price has been exponential (use $P=P_{0} a^{t}$ and find the value of a)
c) Fill the following table

\mathbf{t}	Linear Growth price	Exponential Growth price
0	200	200
20	400	400
30		

6) Give a possible formula for the following function:

7) According to a survey, the number of people (N) attending concerts in an arena is given in the following table:

Price (P)	10	15	20	25
Number of people (\boldsymbol{N})	200	150	100	50

a) Find the linear equation which gives the price as a function of number of people (price depends on number of people)
b) Find the linear equation which gives the number of people as a function of price (number of people depends on price)
8) Suppose that the demand and Supply function for a product is given by:

$$
q=-p+8 \quad \text { and } \quad q=2 p+2
$$

$$
\text { where } p \text { is the unit price in } \$ \text { of the product. }
$$

a) Find the equilibrium point and the quantity of the product

9) Solve for t for each of the following equations (you must show your work):
a) $3 e^{4 t}=2 e^{2 t}$
b) $5\left(3^{t}\right)=2\left(6^{t}\right)$
c) $\ln (t-1)=0$
d) $\ln (2 t+1)+\ln (2 t-1)=0$

Algebra Review Problems:

1. Solve for $x: \frac{2}{x^{2}-1}-\frac{2}{x+1}=\frac{-1}{1-x}$
2. Solve for x (use the quadratic formula): $x^{2}-8 x=-10$
3. Graph the following function: $y=5-x^{2}$

4. Find the x-intercept for: $y=-x^{2}+x+20$
5. Match the graphs with the equations:
a) $y=0.5 x+2$ is best represented by line: \qquad
b) $y=x-4$ is best represented by line: \qquad
c) $y=-0.7 x+3$ is best represented by line:
d) $y=-x-4$ is best represented by line:

