### DEPARTMENTAL FINAL EXAMINATION Fall 2008

## MATH M 119 BRIEF SURVEY OF CALCULUS

Г

#### Directions

- **<u>DO NOT OPEN</u>** this test booklet until you are told to do so.
- There are 8 pages in this exam with 17 problems You MUST get a new exam from the proctor if your exam is incomplete.
- PRINT your name, student ID#, and mark your section below.
- You will have two hours to complete this examination.

No scrap paper, notes, books, nor graphing calculators allowed. Cell phones should be OFF. Headsets are not permitted.

# Please write legibly. To receive any credit you must show supporting work!

#### **Circle All Your Final Answers**

| NAME<br>(Print Clearly) |  |
|-------------------------|--|
| STUDENT<br>ID#          |  |

| Check your section here. |  |  |  |
|--------------------------|--|--|--|
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |

| Do Not Write in this area. |            |  |
|----------------------------|------------|--|
| 1                          | 3p         |  |
| 2                          | <b>4</b> p |  |
| 3                          | 6р         |  |
| 4                          | 3р         |  |
| 5                          | 4p         |  |
| 6                          | 4p         |  |
| 7                          | 16p        |  |
| 8                          | 6р         |  |
| 9                          | 4p         |  |
| 10                         | 6р         |  |
| 11                         | 16p        |  |
| 12                         | 6р         |  |
| 13                         | <b>4</b> p |  |
| 14                         | <b>4</b> p |  |
| 15                         | 2p         |  |
| 16                         | <b>4</b> p |  |
| 17                         | 8p         |  |
| Total                      | 100p       |  |

1. Sketch the graphs of the first derivative of the function given below. Be sure that your sketches are consistent with the important features of the original functions. [3p]



2. A company's pricing schedule is given as: (Show all steps for credit)

| q (number of units)       | 1  | 3  | 5 | 7 |
|---------------------------|----|----|---|---|
| <i>p</i> (price per unit) | 12 | 10 | 8 | 6 |

Find a linear equation which expresses p as a function of q

[**4**p]

3. Referring to the graph of the function f(x) in  $a \le x \le e$  given below

[6p]

- List the points on *x*-axis where:
  - A) f'(x) = 0:
  - B) f''(x) = 0:
- Express intervals in the form a < x < b or (a, b) your choice of notation.
  - C) Find all intervals on which f'(x) > 0:
- D) Find all intervals on which f'(x) < 0:
- E) Find all intervals on which f''(x) > 0:
- F) Find all intervals on which f''(x) < 0:



4. A population, currently 1200, grows at a continuous rate of 2 % per year. What will the population be in 8 years?[3p]

5. The amount P(t) of a radioactive substance remaining after t days may be expressed by the formula [4p]  $P(t) = P_{\circ}e^{kt}$  where  $P_{\circ}$  is the initial quantity. If the half-life of the substance is 8 days, determine the decay rate k (write your answer with 4 decimal places)

| 7. Using any method you wish find $\frac{dy}{dx}$ for each of th | e following: (Show all steps for crea | lit) [4p each] |
|------------------------------------------------------------------|---------------------------------------|----------------|
| (a) $y = 0.08x^2 - \frac{2}{3}x + \frac{5}{x^2}$                 | (b) $y = 5^x$                         |                |
|                                                                  |                                       |                |
|                                                                  |                                       |                |
|                                                                  |                                       |                |
|                                                                  |                                       |                |
| (c) $y = e^{(x^2 + 1)}$                                          | (d) $y = x^2 \cdot \ln x$             |                |
|                                                                  |                                       |                |
|                                                                  |                                       |                |
|                                                                  |                                       |                |

8. Find an equation of the tangent line to the graph of  $y = x^3$  at x = 2.

9. Revenue is given by R(q) = 300q and cost is given by  $C(q) = 1000 + 2q^2$ . How many units must be sold in order to maximize the profit? [4p]

[6p]

<sup>10.</sup> Find the <u>present</u> value of an investment over 8 years period if there is a <u>continuous money stream</u> of \$5000 per year and the current interest rate is 4% compounded continuously. **[6p]** 

11. Evaluate each of the following integrals: (Show all steps for credit)

[4p each]

(a) 
$$\int \sqrt{x} \, dx$$
  
(b)  $\int (e^{5x} - \frac{1}{x^3}) \, dx$   
(c)  $\int_{-1}^{3} (4x - 1) \, dx$   
(d)  $\int_{1}^{5} \frac{1}{x} \, dx$ 

12. Find its area using the definite integral bounded by the graph of  $y = -x^2 + 5x$  and the *x*-axis [6p]



13. The marginal cost for a company is given by  $C'(q) = 3q^2 - 6q + 20$  dollars/unit where q is the quantity produced. If C(0) = 100, find the total cost of producing 10 units. [4p]

14. Find an antiderivative F(x) with  $F'(x) = e^{4x}$  and F(0) = 2

15. Oil is leaking out of a tanker at a rate of r(t) gallons per minute where t is the elapsed time in minutes. Write a definite integral expressing how much oil leaks out in the first three hours. (*You are not required to estimate nor evaluate this integral*) [2p]

16. Consider a function f(x) defined over the entire real line such as f'(x) = 2x + 10 [4p]

| (a) When (over what interval) is $f$ is increasing? | 16(a) |
|-----------------------------------------------------|-------|
|                                                     |       |
| (b) When (over what interval) is $f$ is decreasing? | 16(a) |

**[4p]** 

- 17. For the function given by:  $f(x) = x^3 + 3x^2$ 
  - (a) Find the critical points and determine whether any of these are local maximum or local minimum
  - (b) Use the second derivative to find the inflection points, the intervals for concave up, concave down

Show all steps and put your <u>final answers</u> for part *a* and *b* in the tables below to be graded. **Final answers without** work will not be graded.

For your convenience:  $f'(x) = 3x^2 + 6x$  and f''(x) = 6x + 6

| Local Max at     |  |
|------------------|--|
| (x coord.)       |  |
| Max value        |  |
| (y coord.):      |  |
| Local Min at     |  |
| (x coord.)       |  |
| Min <u>value</u> |  |
| (y coord.):      |  |

[**8**p]

| Inflection points<br>at:                |  |
|-----------------------------------------|--|
| Concave Up on<br><u>interval(s)</u> :   |  |
| Concave Down<br>on <u>interval(s)</u> : |  |

Combine the above information with the behavior of the function at  $\pm \infty$  to sketch a graph of f(x).

