Ex 1: Read example 3 and 4 on page 191.
Ex 2: An appliance firm determines to sell q radios, the price per radio is given by $p=300-q$ it also determines that the total cost of producing q radios is given by: $C(q)=1000+0.5 q^{2}$.
a) find the total revenue function
b) find the total profit function ($P=R-C$)
c) how many radios must be produced and sell to maximize the profit
d) what is the maximum profit? (When $P^{\prime}=0$ or when $R^{\prime}=C^{\prime}$ as in section 2.6)
e) what is the price per radio must be charged to maximize the profit?
Ans: a) $R=300 q-q^{2}$.
b) $P=-1.5 q^{2}+300 q-1000$.
c) 100 .
d) 14000
e) 200 .

Ex 3: A theater determine that if the admission price is $\$ 10$, it averages 100 people in attendance. But for every increase of $\$ 2$, it loses 5 customers from the average number. Every customers spends an average of $\$ 2$ on concessions. What admission price should the theater charge in order to maximize the revenue?

Solution:

- Revenue from tickets = (New Price) (New \# of tickets)

$$
=(10+2 x)(100-5 x)
$$

- Revenue from concessions = $\$ 2$ (New \# of customers)

$$
=\$ 2(100-5 x)
$$

- Total Revenue $=$ Revenue from Tickets + Revenue from Concessions

$$
R=(10+2 x)(100-5 x)+2(100-5 x)
$$

Find R^{\prime} and make it $=0$ and solve.
(Answer: $x=7$ or new price is $\$ 24$)

Ex 4: An apartment complex with 220 units can fill all units when the rent is $\$ 480$ per month. It is estimated that for each $\$ 15$ per month increase in rent, 5 units will become vacant. The complex has a fixed monthly costs of $\$ 60,000$ and a maintenance cost of $\$ 60$ for each unit rented. What monthly rent should be charged to maximize the profit?

Solution:

- Revenue $R=$ (New Price) (New \# of units) $=(480+15 x)(220-5 x)$
- Cost $C=\$ 60$ (New \# of units) $+\$ 60,000=60(220-5 x)+60000$
- Profit $P=$ Revenue - Cost

Find P^{\prime} and make it $=0$ and solve.
(Answer: new rent is $\$ 600$)

More Derivative Applications

The following are applications on area and perimeter. It requires two equations with two variables:

1) The first equation is from the given information, the second one is to maximize or minimize.
2) Make the second equation with one variable using the first equation and then solve using the steps of section 4.1 and 4.2.
$\frac{\text { Perimeter: }}{\text { Area: }} \quad$ The sum of all sides.
Length . Width

Ex 5: A farmer wants to enclose three rectangular areas next to a river using 400 feet of fencing. What is the largest area that can be enclosed? (note that the farmer doesn't have to fence the sides next to the river)

Equation 1, Given: Perimeter $=400$ or

$$
400=x+4 y
$$

Equation 2, Find: Max Area or $\quad A=x . y$

- Isolate a variable from the first equation: $x=400-4 y$
- Substitute in the second equation:

$$
\begin{aligned}
A=x \cdot y & =(400-4 y) \cdot y \\
& =400 y-4 y^{2}
\end{aligned}
$$

Find A^{\prime} and make it $=0$, and solve. Use this space to solve in class:
(Answer: 50 by 200)

Ex 6: A rectangular lot is to be fenced off along the highway. The fence along the highway costs $\$ 6$ per ft, on the other three sides $\$ 2$ per ft. Find the largest area that can be fenced off for $\$ 320$.

Equation 1, Given: total cost $=\$ 320$ or $\quad 320=\$ 8 x+\$ 4 y$
Equation 2, Find: Max Area or $\quad A=x . y$

- Isolate a variable from the first equation: $y=(320-8 x) / 4=80-2 x$
- Substitute in the second equation: $\quad A=x \cdot y=(80-2 x) \cdot x$

$$
=80 x-2 x^{2}
$$

- Find A^{\prime} and make it $=0$, and solve. Use this space to solve in class

