| Derivative Rules | Examples |
| :--- | :--- | :--- |
| 1. The main Rules: | |
| If $y=x^{a}$; then $y^{\prime}=a x^{a-1}$ | |
| If $y=x$; then $y^{\prime}=1$ | |
| If $y=c$; then $y^{\prime}=0$ | |$)$

- Rules 1, 2, 3 and 4 are from sections 3.1 and 3.2.
- Rule 5 is from section 3.3.
- Rules 6 and 7 are from section 3.4.

Finding the Equation of the Tangent Line: This part is available as a power point presentation
Example 1: Find the equation of the tangent line of : $y=x^{3}-x^{2}$ at $x=2$
Solution:
The slope of the tangent line at any point is the derivative at that point:

$$
y^{\prime}=3 x^{2}-2 x
$$

At $x=2$, we need to find m, and the value of y

$$
\begin{array}{ll}
\text { at } x=2, & y^{\prime}=8 \text { or } m=8 \\
\text { at } x=2, & y=4
\end{array}
$$

Now, we want to find the equation of the line that passes the point $(2,4)$ with $m=8$

$$
\begin{aligned}
& y=m x+b \\
& 4=8(2)+b \text { then } b=-12
\end{aligned}
$$

The answer : $y=8 x-12$

Example 2: Find the equation of the tangent line of : $y=x^{3}+x^{2}-x+2$ at $x=1$

Solution:

The slope of the tangent line at any point is the derivative at that point:

$$
y^{\prime}=3 x^{2}+2 x-1
$$

At $x=1$, we need to find m, and the value of y

$$
\begin{array}{ll}
\text { at } x=1, & y^{\prime}=4 \text { or } m=4 \\
\text { at } x=1, & y=3
\end{array}
$$

Now, we want to find the equation of the line that passes the point $(1,3)$ with $m=4$

$$
\begin{aligned}
& y=m x+b \\
& 3=4(1)+b \text { then } b=-1
\end{aligned}
$$

The answer : $y=4 x-1$

Example 3: Find the points where the tangent line is horizontal for :

$$
y=x^{3}-3 x+4 .
$$

Solution:

If the tangent line is horizontal, then the slope $m=0$ or $y^{\prime}=0$:

$$
\begin{aligned}
& y^{\prime}=3 x^{2}-3 \\
& =3\left(x^{2}-1\right)=3(x-1)(x+1)
\end{aligned}
$$

Make $y^{\prime}=0$ and solve: $\quad x=1$ and $x=-1$
The points where the tangent line is horizontal are:

$$
(1,2) \text { and }(-1,6)
$$

