- $f^{\prime}(x)$ indicates if it is Increasing or Decreasing or neither
$f^{\prime}(x)>0$: increasing, rising
$f^{\prime}(x)<0$: decreasing, falling
$f^{\prime}(x)=0$: no changes, horizontal slope for the tangent line
- $f^{\prime \prime}(x)$ indicates if it is concave up, down or neither
$f^{\prime \prime}(x)>0$: concave up
$f^{\prime \prime}(x)<0$: concave down
$f^{\prime \prime}(x)=0$: inflection point, the point where concavity changes.
$f^{\prime}(x)>0$ increasing,
$f^{\prime \prime}(x)<0$ concave down

Example 1. Referring to this graph, indicate the points or intervals where the following conditions can hold:

Condition	Answer
$f^{\prime}(x)<0$	
$f^{\prime}(x)>0$	
$f^{\prime}(x)=0$	
$f^{\prime \prime}(x)=0$	

Condition	Answer
$f^{\prime}(x)=0$ and $f^{\prime \prime}(x)<0$	
$f^{\prime}(x)=0$ and $f^{\prime \prime}(x)>0$	
$f^{\prime \prime}(x)>0$	
$f^{\prime \prime}(x)<0$	

Example 2: Draw possible graph for $f(x)$ by using the graph information of $f^{\prime \prime}(x)$ and $f^{\prime}(x)$:
a) Draw possible shape for:

$$
\begin{aligned}
& f^{\prime \prime}(x)=0 \text { at: } \quad x=b, x=d \\
& f^{\prime \prime}(x)<0 \text { on }: b<x<d \\
& f^{\prime \prime}(x)>0 \text { on }: x>d \text { and } x<b
\end{aligned}
$$

as concave up or concave down or neither.

b) Draw possible shape for:

$$
\begin{aligned}
& f^{\prime}(x)=0 \text { at: } \quad x=a, x=c, x=e \\
& f^{\prime}(x)<0 \text { on }: x<a \text { and } c<x<e \\
& f^{\prime}(x)>0 \text { on }: x>e \text { and } a<x<c
\end{aligned}
$$

as rising, falling or neither:

c) Use the above information to finalize the graph of $f(x)$ if:

$$
\begin{aligned}
& f(a)=-30 \\
& f(b)=5 \\
& f(c)=25 \\
& f(d)=-10 \\
& f(e)=-40
\end{aligned}
$$

d) Fill the following:

$$
\begin{aligned}
& f^{\prime}(x)=0 \text { and } f^{\prime \prime}(x)>0 \text { at }: x= \\
& f^{\prime}(x)=0 \text { and } f^{\prime \prime}(x)<0 \text { at }: x=
\end{aligned}
$$

