• f'(x) indicates if it is Increasing or Decreasing or neither

f'(x) > 0: increasing, rising

f'(x) < 0: decreasing, falling

f'(x) = 0: no changes, horizontal slope for the tangent line

• f''(x) indicates if it is concave up, down or neither

f''(x) > 0: concave up

f''(x) < 0: concave down

f''(x) = 0: inflection point, the point where concavity changes.

Example 1. Referring to this graph, indicate the points or intervals where the following conditions can hold:

Condition	Answer
f'(x) < 0	
f'(x) > 0	
f'(x) = 0	
f''(x) = 0	

Condition	Answer
f'(x) = 0 and $f''(x) < 0$	
f'(x) = 0 and $f''(x) > 0$	
f"(x) > 0	
f''(x) < 0	

a) Draw possible shape for:

$$f''(x) = 0$$
 at: $x = b$, $x = d$
 $f''(x) < 0$ on: $b < x < d$
 $f''(x) > 0$ on: $x > d$ and $x < b$

as concave up or concave down or neither.

b) Draw possible shape for:

$$f'(x) = 0$$
 at: $x = a$, $x = c$, $x = e$
 $f'(x) < 0$ on: $x < a$ and $c < x < e$
 $f'(x) > 0$ on: $x > e$ and $a < x < c$

as rising, falling or neither:

c) Use the above information to finalize the graph of f(x) if:

$$f(a) = -30$$

 $f(b) = 5$
 $f(c) = 25$
 $f(d) = -10$
 $f(e) = -40$

d) Fill the following:

$$f'(x) = 0$$
 and $f''(x) > 0$ at : $x = f'(x) = 0$ and $f''(x) < 0$ at : $x = 0$

