Compound Interest:

$$
P=P_{\circ}\left(1+\frac{r}{n}\right)^{n t}
$$

P_{0} : the principal, amount invested $\quad P$: the new balance $\quad t$: the time in years r : the rate, (in decimal form) n : the number of times it is compounded.

Ex1: Suppose that $\$ 5000$ is deposited in a saving account at the rate of 6% per year. Find the total amount on deposit at the end of 4 years if the interest is:

$$
P_{o}=\$ 5000, r=6 \%, t=4 \text { years }
$$

a) compounded annually, $n=1: \quad P=5000(1+0.06 / 1)^{(1)(4)}=5000(1.06)^{(4)}=\$ 6312.38$
b) compounded semiannually, $n=2: \quad P=5000(1+0.06 / 2)^{(2)(4)}=5000(1.03)^{(8)}=\$ 6333.85$
c) compounded quarterly, $n=4: \quad P=5000(1+0.06 / 4)^{(4)(4)}=5000(1.015)^{(16)}=\$ 6344.93$
d) compounded monthly, $n=12: \quad P=5000(1+0.06 / 12)^{(12)(4)}=5000(1.005)^{(48)}=\$ 6352.44$
e) compounded daily, $n=365: \quad P=5000(1+0.06 / 365)^{(365)(4)}=5000(1.00016)^{(1460)}=\$ 6356.12$

For Compounded Annually where $\boldsymbol{n}=\mathbf{1}: \quad P=P_{\circ}\left(1+\frac{r}{n}\right)^{n t}=P_{\circ}(1+r)^{t}$

Continuous Compound Interest:

Continuous compounding means compound every instant, consider investment of $1 \$$ for 1 year at 100% interest rate. If the interest rate is compounded n times per year, the compounded amount as we saw before is given by:

$$
P=P_{0}(1+r / n)^{n t}
$$

The following table shows the compound interest that results as the number of compounding periods increases:

$$
P_{o}=\$ 1 ; r=100 \%=1 ; \quad t=1 \text { year }
$$

Compounded	n	Compound amount
annually	1	$(1+1 / 1)^{1}=\$ 2$
monthly	12	$(1+1 / 12)^{12}=\$ 2.6130$
daily	360	$(1+1 / 360)^{360}=\$ 2.7145$
hourly	8640	$(1+1 / 8640)^{8640}=\$ 2.71812$
each minute	518,400	$(1+1 / 518,400)^{518,400}=\$ 2.71827$

As the table shows, as n increases in size, the limiting value of P is the special number $\boldsymbol{e}=\mathbf{2 . 7 1 8 2 8}$ If the interest is compounded continuously for t years at a rate of r per year, then the compounded amount is given by:

$$
P=P_{0} . e^{r t}
$$

Ex2: Suppose that $\$ 5000$ is deposited in a saving account at the rate of 6% per year. Find the total amount on deposit at the end of 4 years if the interest is compounded continuously. (compare the result with example 1)

$$
\begin{aligned}
& P_{o}=\$ 5000, r=6 \%, t=4 \text { years } \\
& P=5000 . e^{(0.06)(4)}=5000 .(1.27125)=\$ 6356.24
\end{aligned}
$$

Ex3: Find the amount to be invested at a rate of 8% compounded continuously in order to get $\$ 12,930$ in 6 years.
$P=\$ 12,930, r=0.08, t=6$ years.
$\$ 12,930=P_{0} . e^{(0.08)(6)}$, then $P_{o}=\$ 8000$

The Growth, Decline:

Continuous Growth: $\rightarrow P=P_{o} . e^{r t}$ Annual Growth: $\rightarrow P=P_{o}(1+r)^{t}=P_{o} a^{t}$ where $a>1$	Continuous Decline: $\rightarrow P=P_{o} . e^{-r t}$ Annual Decline: $\rightarrow P=P_{o}(1-r)^{t}=P_{o} b^{t}$ where $0<b<1$
Doubling Time $=\frac{\ln 2}{r}($ for continuous growth $)$ Half-life $=\frac{\ln 2}{r}$	$=\frac{\ln 2}{\ln (1+r)}$ (for annual growth)

Ex4: The growth rate in a certain country is 15% per year. Assuming continuous growth :
a) If the population is 100,000 now, find the new population in 5 years.
b) When will the 100,000 double itself?

Ex5: In 1965 the price of a math book was $\$ 16$. In 1980 it was $\$ 40$. Assuming the continuous growth :
a) Find r and write the equation.
b) Find the cost of the book in 1985 .
c) After when will the cost of the book be $\$ 32$?

Ex6: A couple want an initial balance to grow to $\$ 211,700$ in 5 years. The interest rate is compounded continuously at 15%. What should be the initial balance?

Ex7: The population of a city was 250,000 in 1970 and 200,000 in 1980 (Decline). Assuming the population is decreasing continuously, find the population in 1990.

Ex8: At what rate compounded annually will an investment of $\$ 2100$ accumulate to $\$ 3400$ by the end of 6 years
Ex9: How long does it take amount to double at 8.5% compounded: annually, continuously?
Ex10. The population of a certain town is declining exponentially due to immigration. If the population was reduced by 20% after 10 years, find the decline rate.

Ex11. Write the equatiion of problem 10 but: If only 85% the population are present after 10 years.
Ex12.. The half-life of a certain radioactive substance is 12 days. If there are 10 grams initially:
a) find the rate.
b) when will the substance be reduced to 2 grams?

Ex13. Convert the function $P=400 e^{0.05 t}$ to the form $P=P_{0} a^{t}$
Ex14. Convert the function $P=2000(1.08)^{t}$ to the form $P=P_{0} e^{t}$

Answers:	4. $(211700,4.62)$	5. $(6.1 \%, 54.28,11.36)$	6. $(100,000)$	7. $(160,000)$
8. (8.36%)	9. $(8.5,8.15)$	10. (2.23%)	11. $0.85=e^{-10 t}$	
	12. $(5.78 \%, 27.86)$	13. $P=400(1.0513)^{t}$	14. $P=2000 e^{0.07696 t}$	

