<u>Math M119</u>

Logarithms and Functions Review

 $y = \log_a x \Rightarrow a^y = x$

The number *a* is called the *logarithmic base*

If a = 10, then it is log_{10} and it is called **Common logarithm** (available in calculator as log) If a = e, then it is log_e or ln and it is called **Natural logarithm** (available in calculator as ln)

 $\log_{10} x = \log x$ (*Common* Logarithm) $\log_e x = \ln x$ (*Natural* Logarithm)

1. Convert the following from exponential form to logarithmic form:

a) $y = x^2$	Answer: $\log_x y = 2$
b) $2^3 = 8$	Answer: $\log_2 8=3$
c) $9^{1/2} = 3$	Answer: $\log_9 3 = 1/2$
d) $e^2 = x$	Answer: $\log_e x = 2$ or $lnx = 2$ (base of e means ln)
e) $10^2 = 100$	Answer: $\log_{10}100=2$ or $\log 100=2$ (no base means base of 10)

2. Convert the following from logarithmic to exponential form:

a) $\log_x 9=3$	Answer: $x^3 = 9$
b) $\log x = -1$	Answer: $10^{-1} = x$ (no base means base of 10)
c) $\ln x = -1$	Answer: $e^{-1} = x$ (ln means log to the base of e)

3. Solve for x (hint: first, convert each from logarithmic to exponential form)

a) $\log_9 x = 1$	Answer: $x = 9$
b) $\log_a x = 1$	Answer: $x = a$
c) $\ln x = 1$	Answer: $x = e$ (why?)

4. Solve for *x* (hint: first, convert each from logarithmic to exponential form)

a) $\log_9 x = 0$	Answer: $x = 1$
b) $\log_x x = 0$	Answer: $x = 1$
c) $\ln x = 0$	Answer: $x = 1$ (why?)

$$\log_a a = 1$$
; $\log_e e = 1$ or $\ln e = 1$ $\log_a 1 = 0$; $\log_e 1 = 0$ or $\ln 1 = 0$

Properties of logarithms

Rule	Formula	Example
I) Multiplication	$\ln (AB) = \ln A + \ln B$	$\ln 5x = \ln 5 + \ln x$
II) Division	$\ln\frac{A}{B} = \ln A - \ln B$	$\ln 5 / x = \ln 5 - \ln x$
III) Power	$\ln A^p = p \ln A$	$\ln 5^x = x \ln 5$

Examples:

Example 1: Express in term of logarithms:

a)
$$\log (x^2 y^2)$$
 b) $\log \frac{x^3 y^2}{z^4}$ c) $\log \frac{\sqrt{x^3 y^2}}{z^3 w^5}$

Example 2: Express as a single logarithm:

a)
$$3 \ln x + 4 \ln y - 3 \ln z$$

b) $2 \log x - 3 \log y + 2 \log z$

Example 3: (to be solved and finished in class) Solve for x:

a) $5^{x} = 10$ b) $\ln x = 4$ c) $3^{x} = 5$ d) $\log_{3} (2x-1) - \log_{3} (x-4) = 2$ e) $\log_{3} (x-4) + \log_{3} (x+4) = 3$ f) $\log x + \log (x-3) = 1$ g) $\log_{2} x + \log_{2} (x-2) = 3$

Example 4: (to be solved in class, but finished at home) Solve for x:

a) $\ln x = -2$	b) $\log_2 x + \log_2 (x - 2) = 3$	c) $e^{t(t+1)} = 1$
d) $\log_4(x+6) - \log_4 x = 2$	e) $\ln(2t+1) + \ln(2t-1) = 0$	f) $\ln(t - 1) = 3$
g) $5e^{x-3} = 4$	h) $4^x = 5(2^x)$	i) $4(e^{2x}) = e^{6x}$

Answers (not on order): (2/5); (4); $(1/e^2)$; (e^3+1) ; (0, -1); $(\frac{1}{\sqrt{2}})$; $(3+\ln 0.8)$; (0.3466); (2.322)

Homework To Be Turned In:

Answers (not on order):

Solve for *t* using natural logarithms:

1) $e^t = 100$	2) $e^t = 60$	3) $e^{-0.02t} = 0.06$
4) <i>ln t</i> =2	5) $ln t = -3$	6) $e^{0.07t} = 2$
7) $2^t = 43$	8) $4^t = 8$	9) 6 ^{<i>t</i>} = 10
10) $(5.2)^t = 70$	11) $2e^{3t} = 8e^{2t}$	12) $4 = 4e^{0.5t}$
13) $\ln(3t+1) - \ln(2t+3) = 0$	14) $4(3^t) = 5(2^t)$	15) $5e^{3t} = 8e^{2t}$
16) $\ln(3t+1) + \ln(3t-1) = 0$	17) $\ln(t-1) = 2$	18) $6(5^t) = 8(2^t)$

(141), (9.9021), (1.2851), (1.3863), (0.47), (4.6), (2.5769), (4.1), (1.5), (5.4263), (0), (e^2) , (e^{-3}) , (0.55), (0.314), $(\sqrt{2}/3)$, (8.39), (2)