MATH 119

Integrals and Integral Applications (Class Note)

Section 7.1: Integral Formulas (Antiderivative):

In Derivative, you <u>multiply</u> by the original power and you <u>subtract</u> 1 from the <u>original</u> power.

Example:
$$y = x^4 + 2x^3 + 5$$

Then:
$$y' = 4x^3 + 6x^2 + 0$$

In Antiderivative we do the opposite: Add 1 to the power, divide by the new power

If
$$y' = 4x^3 + 6x^2$$
; then $y = \int (4x^3 + 6x^2) dx = \frac{4x^4}{4} + \frac{6x^3}{3} = x^4 + 2x^3 + c$

the c is added for the 5 in the original problem

Derivative (Sections 4.1, 4.2)	Integral (Section 7.1)
• If $y = x^a$; then $y' = ax^{a-1}$	
• If $y = x$; then $y' = 1$	• $\int dx = x + c$
Exmaple: $y = 400 x$, $y' = 400$	$y' = 400x$, then $y = \int 400 dx = 400 \int dx = 400x + c$
• If $y = \ln x$; then $y' = \frac{1}{x}$	• $\int \frac{dx}{x} = \ln x + c$
Exmaple: $y = 100 \ln x$, $y' = \frac{100}{x}$	$y' = \frac{100}{x}$, then $y = \int \frac{100}{x} dx = 100 \int \frac{dx}{x} = 100 \ln x + c$
• If $y = e^{ax}$; then $y' = ae^{ax}$	• $\int e^{ax} = \frac{1}{a}e^{ax} + c$
Exmaple: $y = \frac{1}{5}e^{5x}$, $y' = e^{5x}$	$y' = e^{5x}$, then $y = \int e^{5x} dx = \frac{1}{5}e^{5x} + c$
• If $y = a^x$; then $y' = \ln a . a^x$	• $\int a^x = \frac{a^x}{\ln a} + c$
Exmaple: $y = \frac{1}{\ln 2} . 2^x$, $y' = \frac{1}{\ln 2} . \ln 2 . 2^x = 2^x$	$y' = 2^x$, then $y = \int 2^x dx = \frac{1}{\ln 2} \cdot 2^x + c$

Section 7.3: Definite Integrals

Example:
$$\int_{a}^{b} F'(x)dx = F(b) - F(a)$$

$$= 4 [\ln x]_{1}^{2} = 4 [\ln 2 - \ln 1] = 4 \cdot \ln 2 = 2.773$$

Remember: $\ln 1 = 0$; $\ln e = 1$; $e^0 = 1$

Section 6.3: Annuities, Future and Present Value of an Income Stream:

In chapter 1, we covered the present and future value of a single payment. Now we see how to calculate the present and future value of a continuous stream of payment as an income or investment (annuity).

Here are some examples for each:

- Annuity (A): an investment each month or year in the bank for a future college fund, IRA...
- Continuous income (A): an income generated each month or year in a business such as monthly rent, house payments, memberships dues...
- **Present Value** (P_0) : The amount of money that must be deposited today to generate the same income stream over the same term. Lottery: cash option now, or payments.

	Single Payment (Sec. 1.6, 1.7)	Continuous Stream of payment or Annuity (A) (Sec. 6.3)
Future Value	$P = P_0 e^{rt}$	$F = \int_{0}^{t} A \cdot e^{rt} dt = A \int_{0}^{t} e^{rt} dt$
Present Value	$P_0 = Pe^{-rt}$	$P = \int_{0}^{t} A \cdot e^{-rt} dt = A \int_{0}^{t} e^{-rt} dt$

Reminder:
$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$
 ; **example:** $\int_{0}^{2} e^{-4x} dx = \frac{1}{-4} \left[e^{-4x} \right]_{0}^{2} = \frac{-1}{4} \left[e^{-8} - e^{0} \right] = 0.2499$

Ex. 1: Find the present and future value of a constant income stream of \$1000 per year over a period of 20 years, assuming an interest rate of 6% compounded continuously.

(Ans: Present value = \$11,646.76; Future value = \$38,668.62)

- **Ex. 2**: Suppose you want to have \$50,000 in 8 years in a bank account with 2% interest rate compounded continuously.
 - a) If you make one lump sum deposit now, how much should you deposit?
 - b) If you deposit money continuously throughout the 8-year period, how much should you deposit each year, each month?

(Ans: a)
$$$42,607.20$$
; b) $A = 5763.33 per year or $$480$ per month)

Ex. 3: If an amount of \$1000 was invested in the bank every year for 10 years with 8% interest compounded continuously. Find the new balance (*value of annuity*) after 10 years.

(Ans: \$ 15319.27)

Ex. 4: What should *A (annuity)* per year be so that the amount of a continuous money flow over 25 years at interest rate 12%, compounded continuously, will be \$40,000?

$$(Ans: A = $251.50)$$

- Ex. 5: A new department store is expected to generate income at continuous rate of \$50,000 per year over the next 5 years. Find the present value of the store if the current interest rate is 10% compounded continuously (Ans: \$196734.67).
- **Ex. 6:** Find the accumulated present value of an investment over 20 years period if there is a continuous money flow of \$1800 per year and the current interest rate is 8% compounded continuously.

(Ans: \$17,957.32)