MATH 119

Integrals and Integral Applications

(Class Note)

Section 7.1: Integral Formulas (Antiderivative):

In Derivative, you multiply by the original power and you subtract 1 from the originalpower.
Example: $y=x^{4}+2 x^{3}+5 \quad$ Then: $y^{\prime}=4 x^{3}+6 x^{2}+0$
In Antiderivative we do the opposite: Add 1 to the power, divide by the new power
If $y^{\prime}=4 x^{3}+6 x^{2}$; then $y=\int\left(4 x^{3}+6 x^{2}\right) d x=\frac{4 x^{4}}{4}+\frac{6 x^{3}}{3}=x^{4}+2 x^{3}+c$
the c is added for the 5 in the original problem

Derivative (Sections 4.1, 4.2)	Integral (Section 7.1)
- If $y=x^{a}$; then $y^{\prime}=a x^{a-1}$	- $\int x^{a} d x=\frac{x^{a+1}}{a+1}+c$
- If $y=x$; then $y^{\prime}=1$ Exmaple: $y=400 x, y^{\prime}=400$	- $\int d x=x+c$ $y^{\prime}=400 x$, then $y=\int 400 d x=400 \int d x=400 x+c$
- If $y=\ln x$; then $y^{\prime}=\frac{1}{x}$ Exmaple: $y=100 \ln x, y^{\prime}=\frac{100}{x}$	$\begin{aligned} & \text { - } \int \frac{d x}{x}=\ln x+c \\ & y^{\prime}=\frac{100}{x}, \text { then } y=\int \frac{100}{x} d x=100 \int \frac{d x}{x}=100 \ln x+c \end{aligned}$
- If $y=e^{a x}$; then $y^{\prime}=a e^{a x}$ Exmaple: $y=\frac{1}{5} e^{5 x}, y^{\prime}=e^{5 x}$	$\begin{aligned} & \text { - } \int e^{a x}=\frac{1}{a} e^{a x}+c \\ & y^{\prime}=e^{5 x}, \text { then } y=\int e^{5 x} d x=\frac{1}{5} e^{5 x}+c \end{aligned}$
- If $y=a^{x}$; then $y^{\prime}=\ln a \cdot a^{x}$ Exmaple: $y=\frac{1}{\ln 2} \cdot 2^{x}, \quad y^{\prime}=\frac{1}{\ln 2} \cdot \ln 2 \cdot 2^{x}=2^{x}$	- $\int a^{x}=\frac{a^{x}}{\ln a}+c$ $y^{\prime}=2^{x}$, then $y=\int 2^{x} d x=\frac{1}{\ln 2} \cdot 2^{x}+c$

Section 7.3: Definite Integrals

$$
\begin{gathered}
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a) \\
\text { Example: } \int_{1}^{2} \frac{4}{x} d x=4[\ln x]_{1}^{2}=4[\ln 2-\ln 1]=4 . \ln 2=2.773
\end{gathered}
$$

Remember: $\ln 1=0 ; \ln e=1 ; e^{0}=1$

Section 6.3: Annuities, Future and Present Value of an Income Stream:

In chapter 1, we covered the present and future value of a single payment. Now we see how to calculate the present and future value of a continuous stream of payment as an income or investment (annuity).

Here are some examples for each:

- Annuity (A): an investment each month or year in the bank for a future college fund, IRA...
- Continuous income (A): an income generated each month or year in a business such as monthly rent, house payments, memberships dues...
- Present Value $\left(\boldsymbol{P}_{\mathbf{0}}\right)$: The amount of money that must be deposited today to generate the same income stream over the same term . Lottery: cash option now, or payments.

	Single Payment (Sec. 1.6, 1.7)	Continuous Stream of payment or Annuity $(\mathbf{A})($ Sec. 6.3$)$
Future Value	$P=P_{0} e^{r t}$	$F=\int_{0}^{t} A \cdot e^{r t} d t=A \int_{0}^{t} e^{r t} d t$
Present Value	$P_{0}=P e^{-r t}$	$P=\int_{0}^{t} A . e^{-r t} d t=A \int_{0}^{t} e^{-r t} d t$

Reminder: $\int e^{a x} d x=\frac{1}{a} e^{a x}+c$; example: $\int_{0}^{2} e^{-4 x} d x=\frac{1}{-4}\left[e^{-4 x}\right]_{0}^{2}=\frac{-1}{4}\left[e^{-8}-e^{0}\right]=0.2499$
Ex. 1: Find the present and future value of a constant income stream of $\$ 1000$ per year over a period of 20 years, assuming an interest rate of 6% compounded continuously.

$$
\text { (Ans: Present value }=\$ 11,646.76 ; \text { Future value }=\$ 38,668.62)
$$

Ex. 2: Suppose you want to have $\$ 50,000$ in 8 years in a bank account with 2% interest rate compounded continuously.
a) If you make one lump sum deposit now, how much should you deposit?
b) If you deposit money continuously throughout the 8 -year period, how much should you deposit each year, each month?
(Ans: a) $\$ 42,607.20$; b) $A=\$ 5763.33$ per year or $\$ 480$ per month)
Ex. 3: If an amount of $\$ 1000$ was invested in the bank every year for 10 years with 8% interest compounded continuously. Find the new balance (value of annuity) after 10 years.
(Ans: \$ 15319.27)
Ex. 4: What should A (annuity) per year be so that the amount of a continuous money flow over 25 years at interest rate 12%, compounded continuously, will be $\$ 40,000$?

$$
\text { (Ans: } A=\$ 251.50 \text {) }
$$

Ex. 5: A new department store is expected to generate income at continuous rate of $\$ 50,000$ per year over the next 5 years. Find the present value of the store if the current interest rate is 10% compounded continuously
(Ans: \$196734.67).
Ex. 6: Find the accumulated present value of an investment over 20 years period if there is a continuous money flow of $\$ 1800$ per year and the current interest rate is 8% compounded continuously.
(Ans: \$17,957.32)

