Example 1: Consider the graph $f(x)$ shown below:

Relative Max at: $x=$ \qquad ; Relative Min at $x=$ \qquad
Absolute Max at: $x=$ \qquad ; Absolute Min at $x=$ \qquad
Critical points at: $x=$ \qquad ; $f^{\prime \prime}(x)=0$ at: $x=$ \qquad
$f^{\prime}(x)=0$ at: $\quad x=$ \qquad
$f^{\prime}(x)>0$ at the interval of: \qquad ; $f^{\prime}(x)<0$ at the interval of: \qquad
$f^{\prime \prime}(x)>0$ at the interval of: \qquad ; $f^{\prime \prime}(x)<0$ at the interval of: \qquad
$f^{\prime \prime}(x)>0 \& f^{\prime}(x)=0$ at : $x=$ \qquad ; $f^{\prime \prime}(x)<0 \& f^{\prime}(x)=0$ at : $x=$ \qquad

Example 2: Consider the graph $f(x)$ shown below:

Answers:

Please ask your instructor if you don't agree with an answer, you might be correct

Example 1:

Relative Max at: $x=d$
Relative Min at $x=b$
Absolute Max at: $x=a$
Absolute Min at $x=f$
Critical points or: $\quad f^{\prime}(x)=0$ at: $x=b, d$
$f^{\prime \prime}(x)=0$ (Inflection points) at: $x=c, e$
$f^{\prime}(x)=0$ (Tangent line is horizontal) at: $\quad x=b, d$
$f^{\prime}(x)>0$ (Increasing) at the interval of: $(b<x<d)$
$f^{\prime}(x)<0$ (Decreasing) at the interval of: $(a<x<b)$ and $(d<x<f)$
$f^{\prime \prime}(x)>0$ (Concave Up) at the interval of: $(a<x<c)$ and $(e<x<f)$
$f^{\prime \prime}(x)<0$ (Concave Down) at the interval of: $(c<x<e)$
$f^{\prime \prime}(x)>0 \& f^{\prime}(x)=0$ at (local Minimum) : $x=b$
$f^{\prime \prime}(x)<0 \& f^{\prime}(x)=0$ at (local Maximum) : $x=d$

Example 2:

	f is: $(+, 0,-)$	f^{\prime} is $:(+, 0,-)$	$f^{\prime \prime}$ is: $(+, 0,-)$
\boldsymbol{a}	0	0	+
\boldsymbol{b}	+	+	+
\boldsymbol{c}	+	0	-
\boldsymbol{d}	+	0	0
\boldsymbol{e}	+	-	-
\boldsymbol{f}	-	-	+

