Chapter 6: Linear Equations and Matrix Algebra

Section 6.3 Cont.: Inverse Matrix

To find the inverse matrix of $A=\left|\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right|$ using the All Integer Method:

- Step 1: Re-write it with the Identity Matrix I next to it on the right side:
(The Identity Matrix I : the square matrix where all Diagonal elements $=1$, the rest are zeros)

$$
\left|\right|
$$

- Step 2: Do the pivot steps (2 pivots for two rows), and the last step should be:

- Step 3: The Identity Matrix I is now on the left side, and the Inverse Matrix A^{-1} is on the right side:

$$
A^{-1}=\left|\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right| \quad \nrightarrow \cdot A^{-1}=T
$$

- You can check your answer by multiplying the original matrix A and the inverse A^{-1}. The answer must be an Identity Matrix I.
Note: Not every matrix has an inverse, for example: $A=\left|\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right|$ does not have an inverse (the second pivot is zero).

Solve the same example and show steps

2	1	1	0
0	1^{*}	-1	2
1	0	1	-1
0	1	-1	2
I	1	A^{-1}	

$$
\begin{gathered}
\frac{(1)-(-1)}{2}=1 \\
A^{-1}=\left[\begin{array}{ll}
1 & -1 \\
-1 & 2
\end{array}\right] \\
A \cdot A^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

Examples: Find the inverse matrix for each of the following and check your answer by multiplying the original matrix by its inverse, the resulting matrix must be an Identity Matrix:

1) $\left|\begin{array}{ll}1 & 1 \\ 2 & 4\end{array}\right|$

2) $\left|\begin{array}{cc}1 & 0 \\ 3 & -2\end{array}\right|$
3)

Note: Not every matrix has an inverse, for example: $A=\left|\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right|$ does not have an inverse (the second pivot is zero).

$2 *$	1	1	0
4	2	0	1
2	1	1	0
0	0	-4	2

Find the inverse of the following 3×3 matrix:

\[

\]

