- •Multiply each Row in matrix A by each Column in matrix B
- •Multiply corresponding entries and then add the resulting products

$$A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \qquad B = \begin{vmatrix} -1 & 1 & 2 \\ 3 & -2 & 3 \end{vmatrix}$$

$$2 \times 2 \times 3 \times 3$$

- •Multiply each Row in matrix A by each Column in matrix B
- •Multiply corresponding entries and then add the resulting products

$$A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \qquad B = \begin{vmatrix} -1 & 1 & 2 \\ 3 & -2 & 3 \end{vmatrix}$$

$$A.B = \begin{pmatrix} (1)(-1) + (2)(3) \\ & & = \end{pmatrix}$$
 =

- •Multiply each Row in matrix A by each Column in matrix B
- •Multiply corresponding entries and then add the resulting products

$$A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \qquad B = \begin{vmatrix} -1 & 1 & 2 \\ 3 & -2 & 3 \end{vmatrix}$$

$$2 \times 2$$

$$A.B = \begin{vmatrix} (1)(-1) + (2)(3) & (1)(1) + (2)(-2) \\ & & = \end{vmatrix}$$
 = $\begin{vmatrix} 5 & -3 \\ & & \end{vmatrix}$

- •Multiply each Row in matrix A by each Column in matrix B
- •Multiply corresponding entries and then add the resulting products

$$A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \qquad B = \begin{vmatrix} -1 & 1 & 2 \\ 3 & -2 & 3 \end{vmatrix}$$

$$2 \times 2$$

$$2 \times 3$$

$$A.B = \begin{vmatrix} (1)(-1) + (2)(3) & (1)(1) + (2)(-2) & (1)(2) + (2)(3) \\ & & & & & \\ & & & \\ & &$$

- •Multiply each Row in matrix A by each Column in matrix B
- •Multiply corresponding entries and then add the resulting products

$$A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \qquad B = \begin{vmatrix} -1 & 1 & 2 \\ 3 & -2 & 3 \end{vmatrix}$$

$$2 \times 2$$

$$2 \times 3$$

$$A.B = \begin{vmatrix} (1)(-1) + (2)(3) & (1)(1) + (2)(-2) & (1)(2) + (2)(3) \\ (3)(-1) + (4)(3) & \end{vmatrix} = \begin{vmatrix} 5 & -3 & 8 \\ 9 & \end{vmatrix}$$

- •Multiply each Row in matrix A by each Column in matrix B
- •Multiply corresponding entries and then add the resulting products

$$A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \qquad B = \begin{vmatrix} -1 & 1 & 2 \\ 3 & -2 & 3 \end{vmatrix}$$

$$2 \times 2$$

$$2 \times 3$$

$$A.B = \begin{vmatrix} (1)(-1) + (2)(3) & (1)(1) + (2)(-2) & (1)(2) + (2)(3) \\ (3)(-1) + (4)(3) & (3)(1) + (4)(-2) \end{vmatrix} = \begin{vmatrix} 5 & -3 & 8 \\ 9 & -5 \end{vmatrix}$$

- •Multiply each Row in matrix A by each Column in matrix B
- •Multiply corresponding entries and then add the resulting products

$$A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \qquad B = \begin{vmatrix} -1 & 1 & 2 \\ 3 & -2 & 3 \end{vmatrix}$$

$$A.B = \begin{vmatrix} (1)(-1) + (2)(3) & (1)(1) + (2)(-2) & (1)(2) + (2)(3) \\ (3)(-1) + (4)(3) & (3)(1) + (4)(-2) & (3)(2) + (4)(3) \end{vmatrix} = \begin{vmatrix} 5 & -3 & 8 \\ 9 & -5 & 18 \end{vmatrix}$$

and
$$A.B = \begin{vmatrix} 5 & -3 & 8 \\ 9 & -5 & 18 \end{vmatrix}$$

2 x 3

How about B.A:

$$B = \begin{vmatrix} -1 & 1 & 2 \\ 3 & -2 & 3 \end{vmatrix} , A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$

$$2 \mathbf{x}$$

$$\mathbf{x} \mathbf{2}$$

3 columns

$$A = \begin{vmatrix} 1 & 1 & 5 \\ 2 & 1 & -1 \end{vmatrix}$$
 , $B = \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix}$, $C = \begin{vmatrix} 2 & -1 \\ 1 & 2 \\ 0 & 4 \end{vmatrix}$

- a) Which of the following multiplication is possible?
- b) If it is possible, find the dimension of the resulting matrix

A.B A.C B.C C.A

$$A = \begin{vmatrix} 1 & 1 & 5 \\ 2 & 1 & -1 \end{vmatrix}$$
 , $B = \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix}$, $C = \begin{vmatrix} 2 & -1 \\ 1 & 2 \\ 0 & 4 \end{vmatrix}$

- a) Which of the following multiplication is possible?
- b) If it is possible, find the dimension of the resulting matrix

$$A.B = \begin{vmatrix} 1 & 1 & 5 \\ 2 & 1 & -1 \end{vmatrix} \cdot \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix} = \begin{bmatrix} 3 \\ 5 \\ 2 \times 1 \end{bmatrix}$$

$$2 \times 3 \times 1$$

$$A = \begin{vmatrix} 1 & 1 & 5 \\ 2 & 1 & -1 \end{vmatrix}$$
 , $B = \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix}$, $C = \begin{vmatrix} 2 & -1 \\ 1 & 2 \\ 0 & 4 \end{vmatrix}$

- a) Which of the following multiplication is possible?
- b) If it is possible, find the dimension of the resulting matrix

$$A.C = \begin{array}{|c|c|c|c|c|c|}\hline 1 & 1 & 5 \\ \hline 2 & 1 & -1 \\ \hline 2 \times 3 & 3 \times 2 \\ \hline \end{array} = \begin{array}{|c|c|c|c|}\hline 3 & 21 \\ \hline 5 & -41 \\ \hline 2 \times 2 & 2 \\ \hline \end{array}$$

$$A = \begin{vmatrix} 1 & 1 & 5 \\ 2 & 1 & -1 \end{vmatrix}$$
 , $B = \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix}$, $C = \begin{vmatrix} 2 & -1 \\ 1 & 2 \\ 0 & 4 \end{vmatrix}$

- a) Which of the following multiplication is possible?
- b) If it is possible, find the dimension of the resulting matrix

$$B.C = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 1 & 2 \\ 0 & 4 \end{bmatrix} \qquad \text{\mathcal{N}. } \mathcal{P}.$$

$$A = \begin{vmatrix} 1 & 1 & 5 \\ 2 & 1 & -1 \end{vmatrix}$$
 , $B = \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix}$, $C = \begin{vmatrix} 2 & -1 \\ 1 & 2 \\ 0 & 4 \end{vmatrix}$

- a) Which of the following multiplication is possible?
- b) If it is possible, find the dimension of the resulting matrix

For the following matrices, Find A.B and B.A if possible:

$$A = \begin{vmatrix} 1 & 1 & 5 \end{vmatrix}, \quad B = \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix}$$

$$AB = \begin{vmatrix} 1 & 1 & 5 \end{vmatrix} \cdot \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix}$$

$$AB = \begin{vmatrix} 1 & 1 & 5 \end{vmatrix} \cdot \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix} \cdot \begin{vmatrix} 1 & 1 & 5 \end{vmatrix} = \begin{bmatrix} 2 & 2 & 10 \\ 1 & 1 & 5 \\ 6 & 0 & 0 \end{bmatrix}$$

$$AB = \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix} \cdot \begin{vmatrix} 1 & 1 & 5 \end{vmatrix} = \begin{bmatrix} 2 & 2 & 10 \\ 1 & 1 & 5 \\ 6 & 0 & 0 \end{bmatrix}$$

$$AB = \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix} \cdot \begin{vmatrix} 1 & 1 & 5 \end{vmatrix} = \begin{bmatrix} 2 & 2 & 10 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$