Chapter 6: Linear Equations and Matrix Algebra

Section 6.3: Matrix Notation

Matrices

- A matrix is a rectangular or square array of values arranged in rows and columns.
- An $m \times n$ matrix \mathbf{A}, has m rows and n columns, and has a general form of

$$
\mathbf{A}_{m \times n}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]_{m \times n}
$$

Examples of Matrices

Two matrices are equal if they have same dimension, same elements:

$$
\begin{array}{ll}
A=\left|\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right| \\
2 \times 2
\end{array} \quad ; \quad B=\left|\begin{array}{cc}
1 & x \\
-1 & y
\end{array}\right|
$$

$$
\begin{aligned}
2 & =x \\
3 & =y
\end{aligned}
$$

Addition of Matrices A and B :

 A and B must have same dimensions:$$
\left.\begin{array}{rlrl}
\mathbf{A}=\left[\begin{array}{ccc}
2 & 4 & 8 \\
9 & -1 & 5
\end{array}\right] & \mathbf{B}=\left[\begin{array}{ccc}
1 & 5 & 3 \\
2 & 3 & -7
\end{array}\right] \\
2 \times 3 & 2 \times 3
\end{array}\right] \begin{array}{ccc}
\mathbf{2}+\mathbf{B} & =\left[\begin{array}{ccc}
2+1 & 4+5 & 8+3 \\
9+2 & (-1)+3 & 5+(-7)
\end{array}\right] & \mathbf{A}-\mathbf{B}
\end{array}=\left[\begin{array}{ccc}
2-1 & 4-5 & 8-3 \\
9-2 & -1-3 & 5-(-7)
\end{array}\right] .
$$

If k is a real number, then the scalar product $k . A$ is abstained by multiplying each element of A by k

If $k=-2$ and $\quad A=\left|\begin{array}{ccc}-1 & -4 & 5 \\ 1 & 3 & -3 \\ 2 & 4 & -2\end{array}\right|$
Then $k . A=-2 . A=\left|\begin{array}{ccc}2 & 8 & -10 \\ -2 & -6 & 6 \\ -4 & -8 & 4\end{array}\right|$

Example: for the following matrices, find $2 A-3 B$

$$
A=\left|\begin{array}{ccc}
-1 & -4 & 5 \\
1 & 3 & -3 \\
2 & 4 & -2
\end{array}\right| \quad B=\left|\begin{array}{ccc}
4 & -1 & 2 \\
-1 & -2 & 3 \\
-3 & -4 & 1
\end{array}\right|
$$

$$
\begin{aligned}
2 A-3 B= & \left|\begin{array}{ccc}
-2 & -8 & 10 \\
2 & 6 & -6 \\
4 & 8 & -4
\end{array}\right|-\left|\begin{array}{ccc}
12 & -3 & 6 \\
-3 & -6 & 9 \\
-9 & -12 & 3
\end{array}\right| \\
& \left.=\begin{array}{|ccc|}
\hline-14 & 5 & 4 \\
5 & 12 & -15 \\
13 & 20 & -7
\end{array}\right)
\end{aligned}
$$

The Transpose of a Matrix:
Each row becomes column, and each column becomes row.

$$
\begin{array}{rlr}
A=\left|\begin{array}{cc}
-1 & 4 \\
1 & 3 \\
2 & 4
\end{array}\right| \\
3 \times 2 & A^{t}=\left|\begin{array}{lll}
-1 & 1 & 2 \\
-4 & 3 & 4
\end{array}\right| \\
2 \times 3
\end{array}
$$

