
Chapter 6: Linear Equations and Matrix Algebra

Section 6.1 and 6.2: The All Integer Method

Method 1: Solving Graphically

- Method 2: Solving by Substitution
- Method 3: Solving by Elimination
- Method 4: Solving by The All Integer Echelon Method

The All Integer Method First and Last Steps:

Example:

Solve for x, y and z:

$$2x + y + 3z = 5$$
$$2y - z = 5$$
$$2x + y + 2z = 6$$

*The First step is to create the Setup (initial) table:

*The Last step will be:

X	y	z	
2	1	3	5
2 0 2	2	-1	5
2	1	2	6
х	у	z	
1	0	0	3
0	1	0	2
_	-		

^{*}The Answer: x = 3, y = 2 and z = -1

The All Integer Method Steps:

Solve for x, y and z using the All-Integers Method:

	z	У	X
5	3	1	2*
5	-1	2	2*
6	2	1	2
5	3	1	2*
			2* 0
			0

$$2x + y + 3z = 5$$
$$2y - z = 5$$
$$2x + y + 2z = 6$$

- Setup the initial table and select the first Pivot Element (* the first element in the table).
- Copy the pivot row and make all other elements in the pivot column = 0.
- Replace the other elements using the "criss-cross" multiplication method.

"Criss-Cross" Operation Step by Step Using First Pivot

Current Pivot (First Pivot) = 2 ;

Previous Pivot (there is none, so assume it = 1)

Lets replace any element such as -1:

Create a rectangle where the pivot element and the element to be replaced are on facing corners.

Multiply the pivot element by the element to be replaced (2*)(-1)

Subtract the product of the two elements on the opposite diagonal. - (3)(0)

Divide the result by the previous pivot element

$$\frac{(2^*)(-1) - (3)(0)}{previous\ pivot} = \frac{-2}{1} = -2$$

Note: The result must be an Integer (no decimal, no fraction) until the very last step (as we will see later).

X 5 0

Replace it in the same location as its original.

0

First Tableau, First Pivot

Current Pivot (First Pivot) = 2 Previous Pivot (there is none, so assume it = 1)

X	y	z				
2*	1	3	5	0.4	7	
0	(2)	-1	5	2*	l.	
2	1	2	6	0	2	
2*	1	3	5			
0	4	-2		(2*)(2) - (1)(0) =	1	-= 4
0				previous pivot	1	

First Tableau, First Pivot

Current Pivot (First Pivot) = 2
Previous Pivot (there is none, so assume it = 1)

x	y	z		
2*	1	3	5	2*5
0	2	-1	(5)	0 5
2	1	2	6	0 - 5
2*	1	3	5	10
0	4	-2	10	(2*)(5) - (5)(0) = 10 = 10
0				previous pivot 1

First Tableau, First Pivot

Current Pivot (First Pivot) = 2
Previous Pivot (there is none, so assume it = 1)

X	y	z		
2*	1	3	5	2* 1
0	2	-1	5	\times
2	1	2	6	2
2*	1	3	5	0
0	4	-2	10	$\frac{(2^*)(1) - (1)(2)}{\text{provious pivot}} = \frac{0}{1} = 0$
0	0			previous pivot 1

First Tableau, First Pivot

Current Pivot (First Pivot) = 2
Previous Pivot (there is none, so assume it = 1)

X	y	z		
2*	1	3	5	2*3
0	2	-1	5	
2	1	2	6	2 2
2*	1	3	5	2
0	4	-2	10	$\frac{(2^*)(2) - (3)(2)}{2} = \frac{-2}{1} = -2$
0	0	-2		previous pivot 1

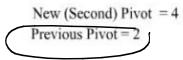
First Tableau, First Pivot

Current Pivot (First Pivot) = 2 Previous Pivot (there is none, so assume it = 1)

x	y	z			
2*	1	3	5	2*_	. 5
0	2	-1	5		
2	1	2	6	2	\ 6
2*	1	3	5		2
0	4	-2	10	(2*)(6) - (5)(2)	==
0	0	-2	2	previous pivot	1

First Tableau, First Pivot

Current Pivot (First Pivot) = 2 Previous Pivot (there is none, so assume it = 1)


X	y	z		
2*	1	3	5	
0	2	(-1)	(5)	
2	1	2	6	
2*	1	3	5	
0	4	-2	10	Fi
0	0	-2	2	
			44	

First Tableau Finished

Second Tableau, Second Pivot

Select a new pivot element which is located diagonaly in the next row.

X	У	z	
200	1	3 -2 -2	5 10 2
0 0	0 4*) 0	-2	10

Repeat the steps used in the previous table:

Copy the pivot row and make all other elements in the pivot column = 0.

Note: For columns already pivoted, the old pivot will change to the new and current pivot and the 0's will stay.

Replace the other elements using the "criss-cross" multiplication method.

$$\frac{(4)(2)-(1)(0)}{2}$$

$$=\frac{8}{2}=4$$

Second Tableau, Second Pivot

New (Second) Pivot = 4 Previous Pivot = 2

	100		1		·
X	У	z	_		4)(3)-(-2)(1)=7
2	1	(3)	(5)		9)(3)-(3)-(3)-(3)
0	4*	-2	10		2
0	0	(-2)	2		(4)(5) - (10)(1) = 5
-					$\frac{(1)(3)}{2} = 3$
4	0	7	5		(1/1)(2)
0	4*	-2	10	Second Tableau Finished	(4)(-2) - (-2)(-2)
0	0 4* 0	-4	4		2
			E	+	= -4
					(4)(2) - (10)(0) = 4
					2

Third Tableau, Third Pivot

Select a new pivot element which is located diagonaly in the next row.

x	y	z	
4	0	7	5
0	0	-4*	4
-4	0	0	-12
0	-4	0	-9
0	0	-4*	4

Repeat the steps used in the previous table:

Copy the pivot row and make all other elements in the pivot column = 0.

Note: For columns already pivoted, the old pivot will change to the new and current pivot and the 0's will stay.

Replace the other elements using the "criss-cross" multiplication method.

$$\frac{-16-(0)}{4}=-4$$

$$\frac{(-4)(5) - (7)(7)}{4}$$

$$\frac{-20 - 14}{4}$$

$$= -12$$

$$(10) - (4)(-2)$$

$$\frac{-1}{4}$$

Third Tableau, Third Pivot

New (Third) Pivot = -4 Previous Pivot = 4

X	y	z		
4	0	7	(5)	
0	4	-2	10	
0	0	-4*	4	
-4	0	0	-12	
0	-4	0	-8	Third Tableau Finished
0	0	-4*	4	

Last Tableau

Select a new pivot element which is located diagonaly in the next row.

			10	New Pivot = No more rows
X	$\boldsymbol{\mathcal{Y}}$	Z		No more pivot
1.74		N. Free		Previous or last Pivot = -4
-4	0	0	-12	Divide all elements by the last pivot
0	-4	0	-8	wich is $= -4$.
0	0	-4	4	This is the last step and the only step where you can get fractions or decimals
1	0	0	3	as answers.
0	1	0	2	x = 3
0	0	1	-1	y = 2
				z = -1

Summary of All Tableaus and Pivots

	10	Z	y	X
	5	3	1	2
Setup	5	-1	2	0
	6	2	1	2
	5	3	1	2*
First	10	-2	4	0
	2	-2	0	0
	5	7	0	4
Second	10	-2	4*	0
	4	-4	0	0
	-12	0	0	-4
Third	-8	0	-4	0
	4	-4*	0	0

X	y	Z	
1	0	0	3
0	1	0	2
0	0	2	-1
	x	=3	
	y	=2	
	Z	=-1	