

Section 5.4: Normal Approximation To The Binomial

<u>RULES</u>: To approximate <u>binomial</u> probability by normal curve area: Step 1) determine n, P, q

Step 2) check that both
$$nP > 5$$
 and $nq > 5$

Step 3) find the expected value and the standard deviation

$$\mu = n \cdot p$$
 $\sigma = \sqrt{n \cdot p \cdot q}$

Step 4) find the new points by:

* subtracting 0.5 from the starting point

* adding 0.5 to the finish point

examples:	$P(3 \le X \le 6)$	will be	$P(2.5 \le X \le 6.5)$
	P(X = 7)	will be	$P(6.5 \le X \le 7.5)$
	$P(X \ge 8)$	will be	$P(X \ge 7.5)$
	$P(X \leq 8)$	will be	$P(X \le 8.5)$

Step 5) find the Z-scores and the area under the normal curve using the table

Example 1: According to the Department of Health and Human Services, the probability is about 80% that a person aged 70 will be alive at the age of 75. Suppose that 500 people aged 70 are selected at random. Find the probability that: a) exactly 390 of them will be alive at the age of 75

 $P(-1.17 \le Z \le -1.06) = 0.1446 - 0.1210 = 0.0236$

Example 1 (Cont.): According to the Department of Health and Human Services, the probability is about 80% that a person aged 70 will be alive at the age of 75. Suppose that 500 people aged 70 are selected at random. Find the probability that:

6 = 8.94 M= 400,

b) for P($375 \le X \le 425$), we use the information of steps 1, 2 and 3 then:

	Section 5.3 No Approximation	Section 5.4 Approximation	
Given	Expected value M Standard Deviation	n, p	~1>5 ~1>5
Steps	 Find: Z-Score: Z = X - μ/σ Use the table 	 Find: q where q =1 - p excepted value E[X] = μ = n·p Standard deviation σ = √n.p.q Add / subtract 0.5 as needed Find the Z-Score : Z = X - μ/σ Use the table 	

Example 2: A coin with Pr[Tails] = 0.4 is flipped 200 times. Find the probability of getting between 65 and 100 tails on the coin. Give your answer as a decimal number correct to three decimal places

Example 3: Assume that IQ scores are normally distributed with mean 100 and standard deviation 15. What is the probability that a randomly chosen person will have an IQ at most 105?

Example 2: A coin with Pr[Tails] = 0.4 is flipped 200 times. Find the probability of getting between 65 and 100 tails on the coin. Give your answer as a decimal number correct to three decimal places

$$\begin{array}{c} q_{\text{num}} & P(CT) = 2.47, m = 200, \quad 1 = 0.6 \\ \hline mnd & P(-65 \leq x \leq 100) \\ \hline mnd & P(-65 \leq x \leq 100) \\ \hline mnd & P(-65 \leq x \leq 100) \\ \hline mnd & P(-65 \leq x \leq 100) \\ \hline mnd & P(-2.24 \leq x \leq 100, 5) \\ \hline mnd & P(-2.24 \leq x \leq 100,$$