Section 5.4: Normal Approximation To The Binomial

RULES: To approximate binomial probability by normal curve area:
Step 1) determine n, p, q
Step 2) check that both $n p>5$ and $n . q>5$
Step 3) find the expected value and the standard deviation

$$
\mu=n \cdot p \quad \sigma=\sqrt{n \cdot p \cdot q}
$$

Step 4) find the new points by:

* subtracting 0.5 from the starting point
* adding 0.5 to the finish point

$$
\begin{array}{lll}
\text { examples: } & P(3 \leq X \leq 6) & \text { will be } P(2.5 \leq X \leq 6.5) \\
& P(X=7) & \text { will be } P(6.5 \leq X \leq 7.5) \\
& P(X \geq 8) & \text { will be } P(X \geq 7.5) \\
& P(X \leq 8) & \text { will be } P(X \leq 8.5)
\end{array}
$$

Step 5) find the Z-scores and the area under the normal curve using the table

Example 1: According to the Department of Health and Human Services, the probability is about 80% that a person aged 70 will be alive at the age of 75 . Suppose that 500 people aged 70 are selected at random. Find the probability that: a) exactly 390 of them will be alive at the age of 75

Step 2)check if both $n . p$ and $n . q$ are more than 5:

$$
\left.\begin{array}{l}
n \cdot p=(500) \cdot(0.8)=400 \\
n \cdot q=(500) \cdot(0.2)=100
\end{array}\right\}>\bar{J}
$$

Step 3)find the expected value and the std. deviation:

$$
\begin{aligned}
& \mu=n \cdot p=(500) \cdot(0.8)=400 \\
& \sigma=\sqrt{n \cdot p \cdot q}=\sqrt{(500) \cdot(0.8) \cdot(0.2)}=8.94
\end{aligned}
$$

Step 4) find the new point:

Step 5)find the Z-score:

$$
\begin{array}{ll}
X=389.5, & \mathrm{Z}=\frac{389.5-400}{8.94}=-1.17 \\
X=390.5, & \mathrm{Z}=\frac{390.5-400}{8.94}=-1.06
\end{array}
$$

and now by using the table:

Example 1 (Cont.): According to the Department of Health and Human Services, the probability is about 80% that a person aged 70 will be alive at the age of 75 . Suppose that 500 people aged 70 are selected at random. Find the probability that:

$$
\mu=400, \quad \sigma=8: 94
$$

b). for $\mathrm{P}(375 \leq X \leq 425)$, we use the information of steps 1,2 and 3 then:
$\mathrm{P}(375 \leq X \leq 425)$ will be $\mathrm{P}(374.5 \leq X \leq 425.5)$

$$
\begin{array}{ll}
X=374.5, & Z=\frac{374.5-400}{8.94}=-2.85 \\
X=425.5, & Z=\frac{425.5-400}{8.94}=2.85
\end{array}
$$

and now by using the table:

99.56%

Example 2: A coin with $\operatorname{Pr[Tails]~=~} 0.4$ is flipped 200 times. Find the probability of getting between 65 and 100 tails on the coin. Give your answer as a decimal number correct to three decimal places
grove $P(T)=0.4, n=200, \quad q=0.6$

$$
\begin{aligned}
& m p>5 \\
& m q>5
\end{aligned}
$$

fund $P(65 \leqslant x \leqslant 100)$
$* M=200(0.4)=80$
$* \sigma=\sqrt{200(0.4)(0.6)}=\sqrt{48}=6.9282$

Example 3: Assume that IQ scores are normally distributed with mean 100 and standard deviation 15 . What is the probability that a randomly chosen person will have an IQ at most 105?

$$
\begin{aligned}
& \begin{array}{ll}
\frac{\text { quin }}{\text { Fin }} & \mu=100, \\
P(x \leqslant 105)^{\circ}=15
\end{array} \\
& z=\frac{105-100}{15} \approx 0.33 \xrightarrow{\text { Table }} P(z \leqslant 0.33) \\
& \text { Assure }=0.6293 \\
& =62.93 \%
\end{aligned}
$$

Example 2: A coin with Pr[Tails] = 0.4 is flipped 200 times. Find the probability of getting between 65 and 100 tails on the coin. Give your answer as a decimal number correct to three decimal places
govern $P(T)=0.4, n=200, \quad q=0.6$

$$
\begin{aligned}
& m \cdot p>5 \\
& m q>5
\end{aligned}
$$

Fund $P(65 \leqslant x \leqslant 100)$
$* M=200(0.4)=80$
$* \sigma=\sqrt{200(0.4)(0.6)}=\sqrt{48}=6.9282$
$\left.\begin{array}{rl}\rightarrow P(64.5 \leqslant x & \leqslant 100.5) \\ z & =\frac{64.5-80}{6.9282} \\ & \approx-2.24 \\ P=\frac{100.5-80}{6.9282}\end{array}\right\} \quad P(-2.24 \leqslant z \leqslant 2.96)$

$$
=P\left(\frac{65-0.5-200(0.4)}{\sqrt{200(0.4)(0.6)}} \leqslant z \leqslant \frac{100+0.5-200(0.4)}{\sqrt{200(0.4)(0.6)}}\right)
$$

