
Section 5.4: Normal Approximation To The Binomial

RULES: To approximate binomial probability by normal curve area:

Step 1) determine n, P, q

Step 2) check that both nP > 5 and n.q > 5

Step 3) find the expected value and the standard deviation

$$\mu = n \cdot p$$
 $\sigma = \sqrt{n \cdot p \cdot q}$

Step 4) find the new points by:

* subtracting 0.5 from the starting point

* adding 0.5 to the finish point

examples:
$$P(3 \le X \le 6)$$
 will be $P(2.5 \le X \le 6.5)$

$$P(X = 7)$$
 will be $P(6.5 \le X \le 7.5)$

$$P(X \ge 8)$$
 will be $P(X \ge 7.5)$

$$P(X \le 8)$$
 will be $P(X \le 8.5)$

Step 5) find the Z-scores and the area under the normal curve using the table

Example 1: According to the Department of Health and Human Services, the probability is about 80% that a person aged 70 will be alive at the age of 75. Suppose that 500 people aged 70 are selected at random. Find the probability that:

a) exactly 390 of them will be alive at the age of 75

a) Step 1)
$$n = 500$$
, $p = 0.8$, $q = 0.2$

Step 2) check if both n.p and n.q are more than 5:

$$n.p = (500).(0.8) = 400$$

$$n.q = (500).(0.2) = 100$$

Step 3) find the expected value and the std. deviation:

$$\mu = n \cdot p = (500) \cdot (0.8) = 400$$

$$\sigma = \sqrt{n.p.q} = \sqrt{(500).(0.8).(0.2)} = 8.94$$

Step 4) find the new point:

$$P(X = 390)$$
 will be $P(389.5 < X < 390.5)$

Step 5) find the Z-score:

$$X = 389.5,$$
 $Z = \frac{389.5 - 400}{8.94} = -1.17$

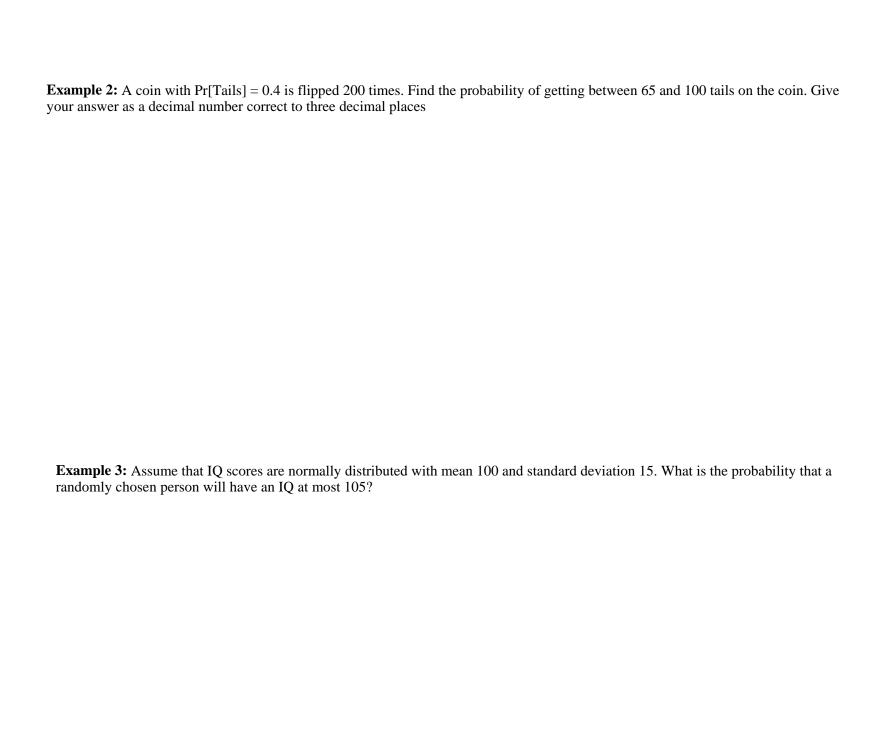
$$X = 390.5,$$
 $Z = \frac{390.5 - 400}{8.94} = -1.06$

and now by using the table:

$$P(-1.17 < Z < -1.06) = 0.1446 - 0.1210 = 0.0236$$

Example 1 (Cont.): According to the Department of Health and Human Services, the probability is about 80% that a person aged 70 will be alive at the age of 75. Suppose that 500 people aged 70 are selected at random. Find the probability that:

b) for P($375 \le X \le 425$), we use the information of steps 1, 2 and 3 then:


P(375
$$\le X \le 425$$
) will be P(374.5 $\le X \le 425.5$)
$$X = 374.5, Z = \frac{374.5 - 400}{8.94} = -2.85$$

$$X = 425.5, Z = \frac{425.5 - 400}{8.94} = 2.85$$

and now by using the table:

$$P(-2.85 \le Z \le 2.85) = 0.9978 - .0022 = 0.9956$$

	Section 5.3 No Approximation	Section 5.4 Approximation
Given	Expected value Standard Deviation	n, p
Steps	• Find: Z-Score: $Z = \frac{X - \mu}{\sigma}$ • Use the table	 Find: q where q = 1 - p excepted value E[X] = μ = n·p Standard deviation σ = √n·p·q Add / subtract 0.5 as needed Find the Z-Score : Z = X - μ σ Use the table

