Chapter 4

Section 4.4: Bernoulli Trials

Example 1: The probability that a team will win a game is 60%. Find the probability that:

$$
\begin{aligned}
& P(\omega)=0.6 \\
& P(L)=0.4
\end{aligned}
$$

a) the team wins a game out of 2

$$
\begin{aligned}
& W . L \\
& (0.6) \cdot(0.4)+(0.4)(0.6)=2
\end{aligned}+(0.6)(0.4)
$$

b) the team wins the first 2 games out of 3

$$
\omega W L \xrightarrow{\text { wins the first } 2 \text { games out of } 3} P=(0.6)(0.6)(0.4)=(0.6)^{2}(0.4)
$$

c) the team wins 2 game out of 3 or $L W W$

$$
P=3(0.6)^{2} \cdot(0.4)^{\prime}
$$

d) the team wins 2 games out of $4 \omega L$) or $(W L L L$) or ω) or $(L L W W)$ or $(L W L W)$ or

$$
\begin{aligned}
& P=\left(6 \cdot(0.6)^{2} \cdot(0.4)^{2}\right. \\
& P=C(4,2)(0.6)^{2}(0.4)^{2} \\
& L^{2}
\end{aligned}
$$

Bernoulli trial: (repeated events) is applied when:

1) each event has two outcomes only, (win, loose); (pass, fail)...
2) the sum of the two probabilities for the two outcomes is = 1
3) the events are independent
4) the probability in the repeated events is the same

$$
\mathrm{P}=\mathrm{C}(n, r) \cdot p^{r} \cdot q^{n-r} \quad(q=1-p)
$$

p : probability of success (what we are looking for)
n : total number of trials
r : number of successes (number of events of what we are looking for)

Example 2: the probability of winning a game is 60%. If the team plays 8 games, find the probability that the team wins:
a) 5 games
b) at least 6 games
c) at least 2 games

$$
P(\omega)=0.6, \quad P(L)=0.4, \quad n=8
$$

a) Sw out of 8

$$
\begin{aligned}
& C(8,5)(0.6)^{5}(0.4)^{3} \\
= & 56 \cdot(0.0777) \cdot(0.064)= \\
= & 0.27869 \\
= & 27.9 \%
\end{aligned}
$$

b) $6 w$
or 7ω

$$
\left.\begin{array}{ll}
\text { b) } \begin{array}{l}
6 w \\
c(8,6)(0.6)^{6}(0.4)^{2} \\
w
\end{array}+C(8,7)(0.6)^{7}(0.4)^{1}+c(8,8)(0.6)^{8}(0.4)^{0}
\end{array}\right)
$$

c) ow on 1ω or $\underbrace{2 \omega \text { on } 3 \omega \text { on } 4 \omega \text { on } 5 \omega \text { - } P(p \omega)-P(1 \omega) \text { or } 8 \omega}_{P(\text { all })}$

$$
\begin{aligned}
&= p(\text { all }-p(p w) \bar{p} \\
&=1-C(8,0)(0.6)^{0}(0.4)^{8}-C(8,1)(0.6)^{1}(0.4)^{7} \\
&=1-0.007-0.079=0.9915 \\
&==99.15 \%
\end{aligned}
$$

Example 3: By taking a test of 10 questions, each question has 4 choices for an answer and only one answer is correct. If a student is answering the questions by guessing, find the probability that he gets at least 2 correct questions

$$
n=10, \quad \overline{p(c)}=\frac{1}{4}=0.25, \quad q=0.75
$$

$P($ st least $2 C$ out of 10)
$O C$ an IC or $\underbrace{2 C \text { on } 3 C \text { or } 4 \mathrm{C} \text { us..... } 10 \mathrm{C}}_{\text {at least } 2 c}$

$$
\begin{aligned}
P & =P(\text { all }-P(\phi c)-P(1 c) \\
& =1-c(10,0)(0.25)^{0}(0.75)^{10}-C(10.1)(0.25)^{1}(0.75)^{9} \\
& =1-0.0563-0.1877=75.60 \%
\end{aligned}
$$

$$
\begin{aligned}
P & =p(0 . l l)-p(10 \omega)-p(q \omega) \\
& =1-C(10,10)(0.25)_{c}^{0}(0.75)^{10}-C(10,9)(0.25)^{1}(0.75)^{9} \\
& =75.60 \mathrm{c} / 0
\end{aligned}
$$

