Chapter 4

Section 4.1: Probability

Outcomes : a particular result of an experience.
Sample Space: the set of all possible outcomes of an experiment.
Example 1: * By rolling a die once, the sample space is $S=(1,2,3,4,5,6)$

* By flipping a coin twice, the sample space is $S=(\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT})$

The Probability or (likelihood) of the occurrence of an event is:

$$
\text { Probability of an event } P(E)=\frac{n(E)}{n(S)}
$$

$n(E)$: number of outcomes where the event occurs.
$n(S)$: total number of possible outcomes in the sample space.
Example 2: In a survey of 100 people, it was found that 57 watch the late news.
$\mathrm{P}(E)$: probability that a person watches late news $\mathrm{P}(E)=57 \%$
$\mathrm{P}\left(E^{\prime}\right)$: probability that a person does not watch late news $\mathrm{P}\left(E^{\prime}\right)=43 \%$

$$
\mathrm{P}(E)+\mathrm{P}\left(E^{\prime}\right)=1
$$

Equally Likely: When each of the outcomes of an experiment has the same probability of occurring (fair die, fair coin....)

Hint: In chapter 3, we were finding: (how many different ways) using permutation or combination. We will use the same concept in probability, but by dividing two numbers:

$$
\begin{aligned}
\text { Probability } & =\frac{\text { Number of choices of what we are looking for }}{\text { Number of All possible choices }} \\
& =\frac{\text { Number of All choices (with restriction) }}{\text { Number of All choices (with no restrictions) }}
\end{aligned}
$$

Example 3: A team of 5 people to be selected out of 4 women and 7 men.
a) In how many different ways this can be done if there is no restrictions?
b) In how many different ways this can be done if the team must have 2 women?
c) What is the probability that the team has 2 women?

Example 4: By rolling a pair of dice, in how many different ways the sum is $4,6,9$, or 12 ?

Example 5: By rolling a pair of dice, find all outcomes of sums and the probability of

Sum of	By	\# of ways	Prob.
2	11	1	$1 / 36$
3	21,12	2	$2 / 36$
4	$22,31,13$	3	$3 / 36$
5	$32,23,41,14$	4	$4 / 36$
6	$33,42,24,51,15$	5	$5 / 36$
7	$43,34,61,16,52,25$	6	$6 / 36$
8	$44,53,35,62,26$	5	$5 / 36$
9	$54,45,63,36$	4	$4 / 36$
10	$55,64,46$	3	$3 / 36$
11	56,65	2	$2 / 36$
12	66	1	$1 / 36$
	Sum $=$	36	$36 / 36=1$

Total number of events is 36 or $6 \times 6=36$

The sum of probabilities for all outcomes is always =1

Example 6: By rolling a pair of dice, find the probability of:
a) getting the sum of 6 .
b) not getting the sum of 6

Example 7: By selecting 5 cards, find the probability of getting:
a) exactly 3 Aces
b) same color
c) same suit

Example 8: In a box there are 15 Science books and 10 History. If 7 books are selected at random (equally likely), find the probability of getting at least 1 Science book.

$$
\begin{aligned}
& \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \\
& \begin{aligned}
\mathrm{P}(A \cup B) & =\text { probability of } A \text { or } B \text { (either } \mathrm{A} \text { or } \mathrm{B} \text { or both) } \\
\mathrm{P}(A \cap B) & =\text { probability of both } A \text { and } B \\
& =\mathrm{P}(A) \cdot \mathrm{P}(B) ; \text { if they are independent (will be in section 4.2) } \\
& =0 ; \text { if they are mutually exclusive (disjoint) }
\end{aligned} \\
& \begin{aligned}
\mathrm{P}(A \cup B)^{\prime} & =\text { probability of neither } A \text { nor } B=1-\mathrm{P}(A \cup B)
\end{aligned}
\end{aligned}
$$

Example 9: Out of 90 students surveyed, 30 took Math, 40 took English and 10 took both. What is the probability that a student took:
a) English and Math
b) neither English nor Math

Example 10: The probability that Bob will pass the Math course is 0.6 , and that he will pass the English course is 0.7 . If the probability that he will pass both of them is 0.4 , find the probability that:
a) he will pass at least one course.
b) he will not pass any of the courses
c) he will pass either course but not both (only one)

Example 11: A survey in a college found that 40\% passed the Math test , 70\% passed the English test and 10\% passed neither test. What is the probability :
a) of students that passed both test?
b) of students that passed one subject only?

Example 12: Using the numbers $1,2,3,4,5,6,7,8,9,10$ and 11. If one number is selected, what is the probability that it is less than 4 or odd?

The Odds:

- Given the probability, find the odds: If the probability of an event E is p, then

$$
\begin{array}{|ll}
\text { Odds for the event }=\frac{p}{1-p} & \text { Odds against the event }=\frac{1-p}{p} \\
\hline
\end{array}
$$

Example 13: The probability for winning a game is $\mathrm{P}(\mathrm{W})=7 / 12$. What is the odds:
a) for winning
b) against winning

- Given the odds, find the probability: If the odds for making an event E are a to b, then:

$$
\begin{array}{|ll|}
\hline \text { Probability of }(E)=\frac{a}{a+b} & \text { Probability of }\left(E^{\prime}\right)=\frac{b}{a+b} \\
\hline
\end{array}
$$

Example 14: The odds for winning a game is $7 / 5$. What is the probability of:
a) winning
b) loosing

