Section 3.1, 3.2: Permutation

Example1: How many different 2 letters words can be formed out of the letters A, B and C?

Example2: Using the letters A, B, C, D, E and F. How many different words can be formed if the word contains:
a) 3 letters
b) 4 letters
c) all letters

Factorial Notation: $n!=n .(n-1) .(n-2) . \ldots . .2 .1$

$$
5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120 \quad 1!=1 \quad 0!=1
$$

Permutation: $P(n, k)=n!/(n-k)$!
$P(5,2)=$
$P(5,1)=$
$P(5,5)=$
$P(5,0)=$
$P(10,3)=$

Example 3: How many 4-digits number can be formed out of $\mathbf{0 , 1 , 2 , 3 , 5 , 7}$ and 9 .
(The question has no restriction, then it is without replacement or each digit can be used only once. Always solve it without replacement, unless the problem specifically asks otherwise)

Example 4: How many 4-digits number can be formed out of $\mathbf{0 , 1 , 2 , 3 , 5 , 7}$ and 9 , if each digit can be used more than once (with repetition).

For the next examples, it is easier solve them with those hints:

1) If there is no restriction, then use the formula
2) If there is restriction such as the number must be even, or must start with a certain digit, then solve the restriction first.
3) Use the following translations:

When you use the word "Or", then add (+) When you use the word "And", then Multiply (.)

Example 5: How many 4-digits number can be formed out of $\mathbf{0 , 1 , 2 , 3 , 5 , 7}$ and 8 . If:
a) with no repetition (No Restriction)
b) with repetition

Example 5 Cont.: How many 4-digits number can be formed out of 0,1,2,3,5,7 and 8. If:
c) the number must be even with no repetition, then with repetition

With no repetition

With repetition

Example 5 Cont.: How many 4-digits number can be formed out of $\mathbf{0 , 1 , 2 , 3 , 5 , 7}$ and 8. If:

d) the number must be odd with no repetition, then with repetition

With no repetition

With repetition

Example 5 Cont: How many 4-digits number can be formed out of $\mathbf{0 , 1 , 2 , 3 , 5 , 7}$ and 8 . If:
e) the number must be larger than 5000 with no repetition
f) the number must be less than 2000 with no repetition

Example 5 Cont: How many 4-digits number can be formed out of $\mathbf{0 , 1 , 2 , 3 , 5 , 7}$ and 8. If:
g) the number must start with $\mathbf{7}$ or 8 with no repetition
h) the number cannot start with 7 with no repetition

Example 5 Cont: How many 4-digits number can be formed out of $\mathbf{0 , 1 , 2 , 3 , 5 , 7}$ and 8. If:
i) the number must have both odd and even digits.
with no repetition
with repetition

Example 6: How many five digit codes can be formed if the first two digits must be non-repeated letters
of the alphabet, and the last three digits can be repeated numbers from the set $\{0-9\}$

Example 7: fair coin is tossed 5 times and the result (heads or tails) is noted on each flip. How many outcomes are in the sample space for this experiment?

Example 8: A certain test has 10 multiple choice questions with 4 choices each, followed by 12 true/false questions. An answer sheet consists of one answer to each question. In how many different ways could you fill in the answer sheet?

Example 9: There are 3 women and 3 men to be seated in a row of $\mathbf{6}$ chairs.
In how many different ways they can be seated if:
a) there is no restriction
b) one woman at each end with no other restrictions
c) they must alternate
d) a particular couple must sit together.

Example 10: There are 3 women and 3 men in to be seated in a row of 10 chairs. In how many different ways they can be seated if:
a) there is no restriction
b) one man at each end with no other restriction

Example 11: There are 5 seats numbered 1,2,3,4 and 5 . Seats 1, 2 and 3 for women, seats 4 and 5 for men. There are 5 women and 4 men to be seated, one of the women is Linda. In how many different way they can be seated if:
a) there is no restriction
b) if Linda must be included

Example 12a: There are 3 people Adam (A), Bob (B) and Carol (C) to be seated in a row of 3 chairs, in how many different ways they can be seated ?

Example 12b: Repeat the same question, but to be seated around a circular table.

Example 13: There are 4 women and 4 men in to be seated around a circular table, in how many different ways they can be seated ?

Example 14: How many words or numbers can be formed by rearranging;

a) ABCD

b) ABBA
c) STATISTICS
d) $\mathbf{1 1 1 2 2 3 5}$

