Chapter 2 Set Theory

Section 2.1: Sets and Subsets

A set is a collection of items, referred to as the <u>elements</u> of the set.

Example 1: A = Northwest States = {WI, MN, ND, MT, ID, WA}

The set represent group of states in which each state is an <u>element</u> that is included in the set.

The set represent group of states in which each state is an element that is included in the set.

 $ID \in A$; also $MN, ND \in A$

But $IN \notin A$ (Indiana is not an element of set A)

Example 2: If $A = \{a, c, d, e, f\}$ and $B = \{b, c, d\}$; $C = \{a, b, d\}$; $D = \{a, b, d, g\}$

 $B \subseteq A$; B <u>contained</u> by A, or B is <u>subset</u> of A.

(each element of B is included in A)

 $C \subseteq A$; but $D \not\equiv A$ because g is not included in A

Important note: which of the following is correct and why?:

a) $b, c \in A$ b) $b, c \subseteq A$ c) $\{b, c\} \subseteq A$ d) $\{b, c\} \in A$

Set-Builder Notation:

Example 3: $I = \{x \mid x \text{ is an integer between 2 and 8}\} = \{2, 3, 4, 5, 6, 7, 8\}.$ The vertical line | is read "such as"

Example 4: $I = \{x \mid x \text{ is even and } 1 < x < 10\} = \{2, 4, 6, 8\}$

of Subsets:

Example 5: If $A = \{A, B\}$; (*Art and Biology*) How many decisions can be made regarding taking any of the above courses?

Example 6: If $A = \{A, B, C\}$; (Art, Biology and Computer) How many decisions can be made regarding taking any of the above courses?

# of elements	# of subsets	Example	Subsets
1	2	$A=\{a\}$	{a}, {Ø}
2	4	A = {a, b}	$\{a\}, \{b\}, \{a, b\}, \{\emptyset\}$
3	8	$A = \{a, b, c\}$	$\label{eq:a} \ensuremath{\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{ \ensuremath{\emptyset} \} \ensuremath{\emptyset} \ensuremath{\}}$
4			
5			
6			
7			
8			
n			

Cardinality: the number of elements in a set.

Example 7: If $A = \{a, b, c\}$; n(A) = 3

<u>Universal Set </u>*U***:** The overall set where all other sets are substes of it.

Example 8: $U = \{IUPUI \text{ students}\}\$ with the following subsets: $B = \{Business \text{ students}\}\$ $F = \{Fresmen \text{ students}\}\$ $R = \{Resident \text{ students}\}\$ $S = \{Senior \text{ students}\}\$ All of the above are substets of the universal set U.

<u>Complement of a set:</u> (what is missing from a subset compared to the universal set)

Example 9: $U = \{a, b, c, d, e, f, g, h\}$; $A = \{a, c, f\}$, $B = \{b, c, g, h\}$ Both sets A and B are subsets of the universal set U where:

 $A' = \{b, d, e, g, h\}$, the elements missing from A

 $B' = \{a, d, e, f\}$, the elements missing from B