Math M118: Lecture Notes For Chapter 7

Slope-Intercept Equation $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$ (m is the slope, b is the y-intercept)
$\boldsymbol{m}>\boldsymbol{0}$ or positive slope, then the line is increasing or rising, as $y=2 x-3$
$\boldsymbol{m}<\mathbf{0}$ or negative slope, then the line is decreasing or falling, as $y=-3 x+4$
$\boldsymbol{m}=\mathbf{0}$, then the line is horizontal, as $y=2$
$\boldsymbol{m}=$ undefined, no slope, then the line is vertical, $x=3$
\boldsymbol{b} determines where the line crosses the y-axis: above origin $(b>0)$, below $(b<0)$ or through $(b=0)$.

Example 1: Graph $2 x-y=4$, (hint: isolate y first to know the shape of the line).

Example 2: Match the following equations with the correct graph:

1) $y=-2 x+4 ; \quad$ graph:_____
2) $y=2 x+4 \quad$; graph: \qquad
3) $y=-5 x-2$; graph: \qquad
4) $y=4 x-2 \quad ; \quad$ graph: \qquad
5) $y=-2 x \quad$; graph: \qquad
6) $y=3 x \quad$; graph: \qquad
7) $y=2$; graph: \qquad
8) $x=3 \quad$; graph: \qquad

Example 3: Locate the following points:

1) $A(2,0)$
2) $B(-2,1)$
3) $C(-2,-3)$
4) $D(2,-3)$
5) $E(0,-2)$
6) $F(3,2)$
7) $G(0,3)$
8) $H(-3,0)$

Notice:

- Any point on the y-axis has $x=0$, or it is called the y-intercept

Points E and G

- Any point on the x-axis has $y=0$, or it is called the \boldsymbol{x}-intercept

Points A and H

- Points in the first quadrant has $(+,+)$, both positive x and y :

Point $F, x>0, \quad y>0$

- Points in the second quadrant has $(-,+)$, negative x, positive y :

Point $B, x<0, \quad y>0$

- Points in the third quadrant has (-,-), both negatives x and y :

Point $C, x<0, y<0$

- Points in the fourth quadrant has (+ , -), positive x, negative y,

Point $D, x>0, \quad y<0$

Linear Inequalities:

Example 4: $\quad 2 x+y-10 \leq 0 \quad$ can be written as: $2 x+y \leq 10$
Example 5: $\quad 2 y \leq x+4 \quad$ can be written as: $\quad-x+2 y \leq 4$
Example 6: $\quad 2 x-5 \leq 3 y \quad$ can be written as: $2 x-3 y \leq 5$
Example 7: $\quad-x-y \leq 3 \quad$ can be written as: $\quad x+y \geq-3$
Notice that when you multiply by negative, the inequality is reversed.
$5>-3$, multiply by negative: $-5<3$

Graphing an Inequality:

Example 8: Graph $2 x+y-5 \leq 0$

- Move the constant (-5), and change to equality:
- Isolate y to get two points and to visualize the shape
- Give at least 2 values to x

$$
\begin{array}{ll}
x= & , y= \\
x= & , y=
\end{array}
$$

- Plot the line and decide which half is the solution

Take a point that in Not located on the line and check if it is included in the solution or not.

If it is, then the whole half is included.
For example , take the point $(0,0)$
Where $x=0$, and $y=0$
Substitute in step 1:

Example 9: Graph the solution set for:

$$
\begin{gathered}
3 x+2 y-12 \leq 0 \\
-x+2 y \leq 4 \\
x \geq 0, y \geq 0
\end{gathered}
$$

Find the coordinates of the corner points

- Take each inequality, move the constant if there is , and change to equality
- Isolate y to get two points and to visualize the shape
- Give at least 2 values to x to get 2 points:

$$
3 x+2 y-12 \leq 0
$$

$$
-x+2 y \leq 4
$$

Example 10: Graph the solution set for:

$$
\begin{gathered}
-3 x+4 y-6 \leq 0 \\
4 x+3 y \geq 9 \\
x \leq 4 \\
x \geq 0, y \geq 0
\end{gathered}
$$

a) Find the coordinates of the corner points.
b) Maximize and Minimize $F=2 x-4 y$

Notes:

Case 1: Bounded Solution, has Max and Min corners

Case 2: Unbounded solution, has a Min corner, but no Max.

Case 3: Unbounded solution, has a Max corner, but no Min

