Math M118: Lecture Notes For Chapter 7

Example 1: Graph 2x - y = 4, (*hint: isolate y first to know the shape of the line*).

Example 3: Locate the following points:

Notice:

•	Any point on the <i>y</i> -axis has $x = 0$, or it is called the <i>y</i> -intercept	Points <i>E</i> and <i>G</i>
•	Any point on the <i>x</i> -axis has $y = 0$, or it is called the <i>x</i> -intercept	Points A and H
•	Points in the first quadrant has $(+, +)$, both positive x and y:	Point <i>F</i> , $x > 0$, $y > 0$
•	Points in the second quadrant has (-, +), negative <i>x</i> , positive <i>y</i> :	Point <i>B</i> , $x < 0$, $y > 0$
•	Points in the third quadrant has (-, -), both negatives <i>x</i> and <i>y</i> :	Point <i>C</i> , $x < 0$, $y < 0$
•	Points in the fourth quadrant has $(+, -)$, positive x, negative y,	Point <i>D</i> , $x > 0$, $y < 0$

Linear Inequalities:

Example 4:	$2x + y - 10 \le 0$	can be written as:	$2x + y \le 10$
Example 5:	$2y \leq x+4$	can be written as:	$-x + 2y \leq 4$
Example 6:	$2x-5 \leq 3y$	can be written as:	$2x - 3y \le 5$
Example 7:	$-x-y \leq 3$	can be written as:	$x + y \ge -3$

Notice that when you multiply by negative, the inequality is reversed.

```
5 > -3, multiply by negative: -5 < 3
```

Graphing an Inequality:

Example 8: Graph $2x + y - 5 \le 0$

- Move the constant (-5), and change to equality:
- Isolate *y* to get two points and to visualize the shape
- Give at least 2 values to *x*
 - $\begin{array}{ll} x = & , y = \\ x = & , y = \end{array}$
- Plot the line and decide which half is the solution

Take a point that in <u>Not located</u> on the line and check if it is included in the solution or not. If it is, then the whole half is included. For example, take the point (0,0)Where x = 0, and y = 0Substitute in step 1:

Example 9: Graph the solution set for:

$$3x + 2y - 12 \le 0$$
$$-x + 2y \le 4$$
$$x \ge 0, \ y \ge 0$$

Find the coordinates of the corner points

- Take each inequality, move the constant if there is , and change to equality
- Isolate *y* to get two points and to visualize the shape
- Give at least 2 values to *x* to get 2 points:

Example 10: Graph the solution set for:

$$-3x + 4y - 6 \le 0$$
$$4x + 3y \ge 9$$
$$x \le 4$$
$$x \ge 0, y \ge 0$$

- a) Find the coordinates of the corner points.
- b) Maximize and Minimize F = 2x 4y

Notes:

Case 1: Bounded Solution, has Max and Min corners

Case 2: Unbounded solution, has a Min corner, but no Max.

Case 3: Unbounded solution, has a Max corner, but no Min

