Note: Some questions have more than one answer

1. By solving the following system for x and y using any method: $2 x-y=2$ and $4 x-2 y=1$. The system is:
A] Consistent, dependent
[B] Inconsistent, dependent
\rightarrow (C) Inconsistent with no solution \rightarrow DD No solution
[E] Consistent, independent
\rightarrow FIInconsistent, independent
[G] Dependent with infinite number of solutions
2. By solving the following system for x and y using any method: $2 x-y=2$ and $4 x-2 y=4$. The system is:
\rightarrow (A) Consistent, dependent
[B] Inconsistent, dependent
[C] Inconsistent with no solution
[D] No solution
[E] Consistent, independent
[F] Inconsistent, independent
G] Dependent with infinite number of solutions $\quad y=2 x-2, x=$ any
3. By solving the following system for x and y using any method: $x-y=2$ and $x+y=6$. The system is:
[A] Consistent, dependent
[B] Inconsistent, dependent
[C] Inconsistent with no solution
[D] No solution
(ED] Consistent, independent
[F] Inconsistent, independent
[G] Has two solution
(H)Has one solution
[I] Has infinite \# of solutions

$$
x=4, \quad y=2
$$

4. By solving any system of three linear equations with three unknowns. There are:
[A] only 3 solutions
[B] 1 or 2 or 3 solutions
(C) only 1 solution
(D) No solution
(E) infinite number of solutions
[F] All of the above except A, B
[G] None of the above you
can choose
5. If \boldsymbol{A} is a 2×2 matrix, \boldsymbol{B} is a 3×2 matrix, \boldsymbol{C} is a 3×1 matrix, \boldsymbol{D} is a 1×3 matrix and \boldsymbol{E} is 2×3 matrix. Which of the following multiplication is possible, and if it is, what is the dimension of the resulting matrix?
a) $A B \quad \mathrm{Yes}$. ; No \qquad .

The product is a : ___ x \qquad matrix
b) $B A \quad$ Yes \qquad ; No \qquad . The product is a : \qquad matrix
c) $A E \quad Y e s$ \qquad ; No \qquad .

The product is a : \qquad matrix
d) $D C \quad Y e s$ \qquad ; No \qquad .

The product is a : 1 x \qquad matrix
e) $C D \quad \mathrm{Yes} _$; No \qquad . The product is a : \qquad matrix
f) $B C \quad$ Yes \qquad ; No \qquad . The product is a : \qquad matrix
g) $B E \quad \mathrm{Yes} \quad$; No \qquad - The product is a : \qquad matrix
h) $E B \quad$ Yes \quad; No . The product is a : \qquad matrix
6. Using the following matrices: $A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 2 & 4 & 2\end{array}\right] ; \quad B=\left[\begin{array}{ccc}2 & 3 & 1 \\ 0 & 1 & 2 \\ -5 & 1 & 2\end{array}\right]$ and, $C=\left[\begin{array}{cc}2 & 4 \\ 3 & 1 \\ -2 & 0\end{array}\right]$
a) Find, if possible, the entry in the second row and first column of $A \cdot B$
b) Find, if possible, the entry in the second row and second column of C.A
c) Find , if possible, the entry in the first row and second column of $B . A$

7. If $A=\left[\begin{array}{ccc}2 & 4 & 0 \\ -1 & -2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & 1 & -2 \\ 4 & 0 & -2\end{array}\right]$, find $2 A-2 B=$

$$
\left[\begin{array}{ccc}
-2 & 6 & 4 \\
-10 & -4 & 14
\end{array}\right]
$$

