MATH 118

Chapter 6 Extra

Note: Some questions have more than one answer

1.	By solving the following system for x and y using any method: $2x - y = 2$ and $4x - 2y = 1$. The system is:		
	[A] Consistent, dependent	[B] Inconsistent, dependent	[C] Inconsistent with no solution
	[D] No solution	[E] Consistent, independent	[F] Inconsistent, independent
	[G] Dependent with infinite number of	solutions	-
2.	By solving the following system for x and y using any method: $2x - y = 2$ and $4x - 2y = 4$. The system is:		
	[A] Consistent, dependent	[B] Inconsistent, dependent	[C] Inconsistent with no solution
	[D] No solution	[E] Consistent, independent	[F] Inconsistent, independent
	[G] Dependent with infinite number of	solutions	-
3.	By solving the following system for x and y using any method: $x - y = 2$ and $x + y = 6$. The system is:		
	[A] Consistent, dependent	[B] Inconsistent, dependent	[C] Inconsistent with no solution
	[D] No solution	[E] Consistent, independent	[F] Inconsistent, independent
	[G] Has two solution	[H] Has one solution	[I] Has infinite # of solutions
4.	By solving any system of three linear equations with three unknowns. There are:		
	[A] only 3 solutions	[B] 1 or 2 or 3 solutions	[C] only 1 solution
	[D] No solution	[E] infinite number of solutions	-

5. If *A* is a 2x2 matrix, *B* is a 3 x 2 matrix, *C* is a 3 x 1 matrix, *D* is a 1 x 3 matrix and *E* is 2 x 3 matrix. Which of the following multiplication is possible, and if it is, what is the dimension of the resulting matrix?

Yes _____; No _____. The product is a : _____x ____ matrix a) *AB* b) *BA* Yes _____; No _____. The product is a : _____x ____ matrix The product is a : _____x ____ matrix Yes _____; No _____. c) *AE* d) *DC* Yes ____; No ____. The product is a : _____x ____ matrix The product is a : _____x ____ matrix e) *CD* Yes ____; No ____. Yes _____; No _____. f) *BC* The product is a : _____x ____ matrix g) *BE* Yes _____; No _____. The product is a : _____x ____ matrix Yes _____; No _____. The product is a : _____x ____ matrix h) *EB*

6. Using the following matrices:
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 2 & 4 & 2 \end{bmatrix}$$
; $B = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & 2 \\ -5 & 1 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 4 \\ 3 & 1 \\ -2 & 0 \end{bmatrix}$

a) Find , if possible, the entry in the second row and first column of *A.B*b) Find , if possible, the entry in the second row and second column of *C.A*c) Find , if possible, the entry in the first row and second column of *B.A*

7. If
$$A = \begin{bmatrix} 2 & 4 & 0 \\ -1 & -2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 1 & -2 \\ 4 & 0 & -2 \end{bmatrix}$, find $2A - 2B$