* Problems with (*) are higher level

1100101111		nowing indic.			
	X		Р	Product	
	а		0.2	d	
	0		0.1	e	
	1		b	0.4	
	2		с	?	
	5		0.2	?	
-				E(X) = 1.7	
1. The value [A] 0.1	e of <i>a</i> in the abo [B]	ve table is 0.2	[C] 0.3	[D] 0.4	[E]0.5
2. The value	e of b in the abo	ve table is			
[A] 0.1	[B]	0.2	[C] 0.3	[D] 0.4	[E]0.5
3. The value	e of <i>c</i> in the above	ve table is			
[A] 0	[B]	0.1	[C] 0.2	[D] 0.3	[E]0.4
4. The value	e of d and e in the	e above table is			
$\begin{bmatrix} A \end{bmatrix} d = \\ \begin{bmatrix} C \end{bmatrix} d =$	0.1, e = 0 0.1, e = 0.1		[B] $d = 0.2, e = 0$ [D] $d = 0.1, e = 0.2$	2	[E] $d = 0.1, e = 0.3$

Problem 1 - 4 refer to the following table:

Problem 5-8 refer to the following problem:

A fair die is rolled 50 times. A random variable is defined as the number of times the die comes up 2. 5. The expected value μ is:

[A] 10	[B] 8.33	[C] 41.67	[D] 2.63	[E]6.94	
6. The variance is: [A] 10	[B] 8.33	[C] 41.67	[D] 2.63	[E]6.94	
7. The standard dev [A] 10	viation is: [B] 8.33	[C] 41.67	[D] 2.63	[E]6.94	

Problem 8 and 9 refer to the following problem:

A fair die is rolled 10 times. A random variable is defined as the number of times the die comes up a number larger than 4.

8. The expected value	ıe μ is:			
[A] 3.5	[B] 3.33	[C] 2.22	[D] 1.49	[E]5
9. The variance is:	[B] 3 33	[C] 2 22	[D] 1 49	(F)5

Problem 10 and 11 refer to the following table:

X	Р	Product
-1	b	-0.15
-2	0.1	-0.2
2	0.3	0.6
3	С	0.75
a	0.2	-0.6

10. The value of *a*, *b* and *c* in the above table are:

[A] $a = -2, b = 0.15, c = 0.25$
[B] $a = -3, b = 0.25, c = 0.15$
[C] $a = -3, b = 0.15, c = 0.25$
[D] a = -3, b = 0.15, c = 0.15
[E] a = 3, b = 0.15, c = 0.25

*11. The variance of	of the above table is			
[A] 4.6	[B] 5.64	[C] 22.84	[D] -22.76	[E]5.4

Problem 12 and 13 refer to the following problem: (see example B in section 5.3 in the book) The height of adult females are normally distributed with a mean of 5 feet 6 inches and a standard deviation of 3 inches. Find the probability that a randomly selected adult female have a height:

12.	2. Between 5 feet 4 inches and 5 feet 11 inches				
	[A] 0.2514	[B] 0.7011	[C] 0.7486	[D] 0.7514	[E]0.9525
	[11] 0.2011				[1]0.0010
10					
13.	At least 5 feet 4 in				
	[A] 0.2514	[B] 0.7011	[C] 0.7486	[D] 0.7514	[E]0.9525

Problem 14- 16 refer to the following problem: Given n = 100 and p = 0.7.

14. The probability of <i>Pr</i> [<i>X</i>]	\geq 65] is given by:	
[A] $Pr[Z \ge -1.2]$	[B] Pr [$Z \ge 1.2$]	[C] Pr [$Z \ge -1.09$]
[D] Pr [$Z \ge98$]	[E] None of the above	
15. The probability of <i>Pr</i> [55	$\leq X \leq 65$] is given by:	
[A] Pr [-3.38 \leq Z \leq -0.98	[B] $Pr[-3.28 \le Z \le -1.09]$	[C] Pr [-3.17 \leq Z \leq -1.2]
$[D] Pr[-3.38 \le Z \le -1.2]$	[E] None of the above	
16. The probability of <i>Pr</i> [<i>X</i>	=55] is given by:	
[A] Pr [-3.38 \leq Z \leq -3.28	B] $Pr[Z = -3.28]$	[C] Pr [-3.38 \leq Z \leq -3.17]
[D] Pr [-3.17 \leq Z \leq -3.28	[E] None of the above]	

*17	• A true-false test c correctly. What is	contains 50 questi the probability that	t the student passes	ade is answering s the test?	g at least 60% of the qu	iestions
	[A] 7.93%	[B] 10.2%	[C] 35.94%	[D] 6.18%	[E] 0.0668	
18.	An exam consists o with exactly 1 con correct answers?	f 8 true-false ques rrect answer. If a	tions and 4 multipl student selects an	e choice question swers at random	ns (4 options per question, what is the expected v	n), each value of
	[A] 4	[B] 5	[C] 6	[D] 7	[E] 8	
19.	In a carnival game the probability that	the probability that t you lose \$5 is 0.6	t you win \$100 is 56. What is your ex	0.04, the probability pected return per	ility that you win \$10 is game?	0.3 and
	[A] -5	[B] 10.3	[C] 1	[D] 3.7	[E]7	
20.	The weight of NFL deviation of 20 por	L lineman are norm unds. The probabil	hally distributed w lity that an NFL lin	ith a mean weighten weighten weighten weighten at	nt of 280 pounds and a sileast 310 pounds is:	tandard
	[A] 0.3415	[B] 0.8415	[C] 0.0387	[D] 0.1587	[E] 0.0008	
21.	Bolts produced by inches. Suppose th and standard devia	a machine are acc hat the length of t ation of 0.02 inche	eptable provided the bolts produced es. what is the prob	that their length are normally dis pability that a bo	is within the range 5.95 stributed with mean of 6 It will be an acceptable 1	to 6.05 inches ength?
	[A] 0.9876	[B] 0.9938	[C] 0.0062	[D] 0.8413	[E] 0.9693	
22.	It was found that 6 probability that at 1	50% of students in least 340 of them a	a local college an are resident is given	re residents. If 60 n by:	00 students are interview	ved, the
	[A] $Pr [Z \ge -1.67]$ [D] $Pr [Z \ge 1.708]$	[B [E	$Pr [Z \ge -1.708]$ None of the abov	[C]	$Pr[Z \ge -1.625]$	

Problem 23-25 refer to the following problem:

The prices in a store are normally distributed with mean of 200 and a standard deviation of 25. Use the table to find the probability of prices that are:

23. Less than 180 [A] 0.2061	[B] 0.2119	[C] 0.2177	[D] 0.7881	[E] None of the above
24. Greater than 180 [A] 0.2061	[B] 0.2119	[C] 0.2177	[D] 0.7881	[E] None of the above
25. Between 190 and [A] 0.5516	230 [B] 0.5368	[C] 0.5403	[D] 0.5290	[E] None of the above

26. An experiment consists of flipping a fair coin <u>until</u> 1 head occur or 3 flips. A random variable X is defined as the number of times the coin was flipped. Find expected value of the random variable. [A] 13/8 [B] 7/4 [C] 1/2 [D] 9/8 [E] 0.0668

- 27. A basketball player makes each free throw with a probability of 0.75. What is the probability of making exactly 5 out of 7 shots?[A] 0.9885 [B] 0.6885 [C] 0.0115 [D] 0.3115 [E] 0.6826
- 28. A basketball player makes each free throw with a probability of 0.75. If he tries 75 shots, what is the probability of making between 60 and 65 successful shots?
 [A] 11.53% [B] 14.88% [C] 18.54% [D] 12.24% [E] None of the above
- * 29. If $\mu = 5$ and $\sigma = 3$. Find c such that Pr(X < c) = 0.9726. [A] 0.76 [B] 10.76 [C] 1.92 [E] 3.84 [C] 1.92

* **30.** If $\mu = 5$ and $\sigma = 3$. Find *c* such that Pr(X < c) = 0.0721. [A] 0.62 [B] 9.38 [C] -1.46 [D] 1.46 [E] 2.92

31. Ten percent of the students at a certain college are non resident. A reporter for the student paper would like to interview at least 5 non resident. If the reporter randomly selects 100 names from the student directory and begins contacting them, what is the probability that she will contact at least 5 non resident students? (*round your answer to the nearest*)

[A] 0.0334	[B] 0.9666	[C] 0.9525
[D] 0.0475	[E] 0.0675	

32. At a local carnival a game can be played with a fishpond containing 100 fish: 90 are white, 9 are red, and 1 is blue. A contestant randomly catches a fish and receives payment as follows:

White: \$0.30
Red: \$1.00
Blue: \$10.00

If it costs \$.60 to play this game, how much (on the average) does the carnival gain on each play?

- [A] -\$0.14 [B] 0.46 [C] 0.14 [D] 0.35 [E] -0.4
- **33.** Repeat the above problem if the question was: how much (on the average) does the contestant gain on each play?
 - [A] -\$0.14[B] 0.46[C] 0.14[D] 0.35[E] -0.4
- *34. There are two urns a and b. Urn a contains 2 red balls and 1 blue ball; urn b contains 1 red ball and 1 blue ball. An experiment consists of drawing a ball at random from urn a, noting its color, placing it in urn b, and then drawing a ball at random from urn b and noting its color. A random variable X is defined by assigning to each outcome the total number of red balls drawn. Find the expected value of X

[A] 7/9	[B] 5/9	[C] 11/9
[D] 13/9	[E] 4/9	

35. An experiment consists of selecting 2 coins from a collection of 3 nickels, 2 dimes, and 1 quarter. What is the expected value?

[A] 20	[B] 30	[C] 15
[D] 25	[E] 10	

* 36. A student is taking a quiz with 4 questions, and each questions has 5 possible answers with only one correct response. A passing grade is answering at least 50% of the questions correctly. What is the probability that the student passes the test if he is guessing every answer?

[A] 0.175	[B] 0.1808	[C] 0.2405
[D] 0.3505	[E] 0.2805	

37. Using the following data regarding the price of microwave ovens: \$450, \$420, \$440, \$440, \$485, \$450, and \$500. Find the median and the mode

[A] (440) , (440,450)	[B] (455) , (450,450)	[C] (420), (450)
[D] (450) , (440,450)	[E] (440), (450)	

38. Compute the expected value for the following table:

	Scores (x)	Frequency	Р		
	0	2			
	1	3			
	2	2			
	3	3			
	Total	10			
[A] 2.6 [D] 2.5	5	[B] [E]	1.6 1.4	[C] 1.5

39. A team of 2 people to be selected out of 5 men and 5 women. A random variable X is defined to be the number of men selected. Find the standard deviation. (*hint: create a table and find the expected value, then create another table to find the variance and the standard deviation*)

[A] 0.444	[B] 1	[C] 0.333
[D] 0.222	[E] 0.667	

* **40.** The entrance exam at a university is normally distributed with a mean of 520 and a standard deviation of 75. If only the top 10% of the students are accepted. Approximately, what is the lowest score for admittance into the university? (*round your answer*)

[A] 625	[B] 630	[C] 617
[D] 610	[E] 600	