* Problems with (*) are higher level

Problem 1-4 refer to the following table:

X	P	Product
\boldsymbol{a}	0.2	\boldsymbol{d}
0	0.1	\boldsymbol{e}
1	\boldsymbol{b}	0.4
2	\boldsymbol{c}	$\boldsymbol{?}$
5	0.2	$\boldsymbol{?}$

1. The value of \boldsymbol{a} in the above table is
[A] 0.1
[B] 0.2
[C] 0.3
[D] 0.4
[E]0.5
2. The value of \boldsymbol{b} in the above table is
[A] 0.1
[B] 0.2
[C] 0.3
[D] 0.4
[E]0.5
3. The value of \boldsymbol{c} in the above table is
[A] 0
[B] 0.1
[C] 0.2
[D] 0.3
[E]0.4
4. The value of \boldsymbol{d} and \boldsymbol{e} in the above table is
[A] $d=0.1, e=0$
[B] $d=0.2, e=0$
[C] $d=0.1, e=0.1$
[D] $d=0.1, e=0.2$
$[\mathrm{E}] d=0.1, e=0.3$

Problem 5- 8 refer to the following problem:

A fair die is rolled 50 times. A random variable is defined as the number of times the die comes up 2. 5. The expected value μ is:
[A] 10
[B] 8.33
[C] 41.67
[D] 2.63
[E]6.94
6. The variance is:
[A] 10
[B] 8.33
[C] 41.67
[D] 2.63
[E]6.94
7. The standard deviation is:
[A] 10
[B] 8.33
[C] 41.67
[D] 2.63
[E]6.94

Problem 8 and 9 refer to the following problem:

A fair die is rolled 10 times. A random variable is defined as the number of times the die comes up a number larger than 4.
8. The expected value μ is:
[A] 3.5
[B] 3.33
[C] 2.22
[D] 1.49
[E]5
9. The variance is:
[A] 3.5
[B] 3.33
[C] 2.22
[D] 1.49
[E]5

Problem 10 and 11 refer to the following table:

X	P	Product
-1	\boldsymbol{b}	-0.15
-2	0.1	-0.2
2	0.3	0.6
3	\boldsymbol{c}	0.75
\boldsymbol{a}	0.2	-0.6

10. The value of $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} in the above table are:
[A] $a=-2, b=0.15, c=0.25$
[B] $a=-3, b=0.25, c=0.15$
[C] $a=-3, b=0.15, c=0.25$
[D] $a=-3, b=0.15, c=0.15$
[E$] a=3, b=0.15, c=0.25$
*11. The variance of the above table is
[A] 4.6
[B] 5.64
[C] 22.84
[D] -22.76
[E]5.4

Problem 12 and 13 refer to the following problem: (see example B in section 5.3 in the book) The height of adult females are normally distributed with a mean of 5 feet 6 inches and a standard deviation of 3 inches. Find the probability that a randomly selected adult female have a height:
12. Between 5 feet 4 inches and 5 feet 11 inches
[A] 0.2514
[B] 0.7011
[C] 0.7486
[D] 0.7514
[E]0.9525
13. At least 5 feet 4 in
[A] 0.2514
[B] 0.7011
[C] 0.7486
[D] 0.7514
[E]0.9525

Problem 14-16 refer to the following problem: Given $n=100$ and $p=0.7$.
14. The probability of $\operatorname{Pr}[X \geq 65]$ is given by:
[A] $\operatorname{Pr}[Z \geq-1.2]$
[B] $\operatorname{Pr}[Z \geq 1.2]$
[C] $\operatorname{Pr}[Z \geq-1.09]$
[D] $\operatorname{Pr}[Z \geq-.98]$
[E] None of the above
15. The probability of $\operatorname{Pr}[55 \leq X \leq 65]$ is given by:
[A] $\operatorname{Pr}[-3.38 \leq Z \leq-0.98]$
[B] $\operatorname{Pr}[-3.28 \leq Z \leq-1.09]$
[C] $\operatorname{Pr}[-3.17 \leq Z \leq-1.2]$
[D] $\operatorname{Pr}[-3.38 \leq Z \leq-1.2]$
[E] None of the above
16. The probability of $\operatorname{Pr}[X=55]$ is given by:
[A] $\operatorname{Pr}[-3.38 \leq Z \leq-3.28]$
[B] $\operatorname{Pr}[Z=-3.28]$
[C] $\operatorname{Pr}[-3.38 \leq Z \leq-3.17]$
[D] $\operatorname{Pr}[-3.17 \leq Z \leq-3.28]$
[E] None of the above]
*17. A true-false test contains 50 questions. A passing grade is answering at least 60% of the questions correctly. What is the probability that the student passes the test?
[A] 7.93\%
[B] 10.2%
[C] 35.94\%
[D] 6.18\%
[E] 0.0668
18. An exam consists of 8 true-false questions and 4 multiple choice questions (4 options per question), each with exactly 1 correct answer. If a student selects answers at random, what is the expected value of correct answers?
[A] 4
[B] 5
[C] 6
[D] 7
[E] 8
19. In a carnival game the probability that you win $\$ 100$ is 0.04 , the probability that you win $\$ 10$ is 0.3 and the probability that you lose $\$ 5$ is 0.66 . What is your expected return per game?
[A] -5
[B] 10.3
[C] 1
[D] 3.7
[E]7
20. The weight of NFL lineman are normally distributed with a mean weight of 280 pounds and a standard deviation of 20 pounds. The probability that an NFL lineman weights at least 310 pounds is:
[A] 0.3413
[B] 0.8413
[C] 0.6587
[D] 0.1587
[E] 0.0668
21. Bolts produced by a machine are acceptable provided that their length is within the range 5.95 to 6.05 inches. Suppose that the length of the bolts produced are normally distributed with mean of 6 inches and standard deviation of 0.02 inches. what is the probability that a bolt will be an acceptable length?
[A] 0.9876
[B] 0.9938
[C] 0.0062
[D] 0.8413
[E] 0.9693
22. It was found that 60% of students in a local college are residents. If 600 students are interviewed, the probability that at least 340 of them are resident is given by:
[A] $\operatorname{Pr}[Z \geq-1.67]$
[B] $\operatorname{Pr}[Z \geq-1.708]$
[C] $\operatorname{Pr}[Z \geq-1.625]$
[D] $\operatorname{Pr}[Z \geq 1.708]$
[E] None of the above

Problem 23-25 refer to the following problem:

The prices in a store are normally distributed with mean of 200 and a standard deviation of 25 . Use the table to find the probability of prices that are:
23. Less than 180
[A] 0.2061
[B] 0.2119
[C] 0.2177
[D] 0.7881
[E] None of the above
24. Greater than 180
[A] 0.2061
[B] 0.2119
[C] 0.2177
[D] 0.7881
[E] None of the above
25. Between 190 and 230
[A] 0.5516
[B] 0.5368
[C] 0.5403
[D] 0.5290
[E] None of the above
26. An experiment consists of flipping a fair coin until 1 head occur or 3 flips. A random variable X is defined as the number of times the coin was flipped. Find expected value of the random variable.
[A] 13/8
[B] $7 / 4$
[C] $1 / 2$
[D] 9/8
[E] 0.0668
27. A basketball player makes each free throw with a probability of 0.75 . What is the probability of making exactly 5 out of 7 shots?
[A] 0.9885
[B] 0.6885
[C] 0.0115
[D] 0.3115
[E] 0.6826
28. A basketball player makes each free throw with a probability of 0.75 . If he tries 75 shots, what is the probability of making between 60 and 65 successful shots?
[A] 11.53\%
[B] 14.88\%
[C] 18.54\%
[D] 12.24\%
[E] None of the above

* 29. If $\mu=5$ and $\sigma=3$. Find c such that $\operatorname{Pr}(X<c)=0.9726$.
[A] 0.76
[B] 10.76
[C] 1.92
[D] -1.92
[E] 3.84
* 30. If $\mu=5$ and $\sigma=3$. Find c such that $\operatorname{Pr}(X<c)=0.0721$.
[A] 0.62
[B] 9.38
[C] -1.46
[D] 1.46
[E] 2.92

31. Ten percent of the students at a certain college are non resident. A reporter for the student paper would like to interview at least 5 non resident. If the reporter randomly selects 100 names from the student directory and begins contacting them, what is the probability that she will contact at least 5 non resident students? (round your answer to the nearest)
[A] 0.0334
[B] 0.9666
[C] 0.9525
[D] 0.0475
[E] 0.0675
32. At a local carnival a game can be played with a fishpond containing 100 fish: 90 are white, 9 are red, and 1 is blue. A contestant randomly catches a fish and receives payment as follows:

White: \$0.30
Red: \$1.00
Blue: \$10.00
If it costs $\$.60$ to play this game, how much (on the average) does the carnival gain on each play?
[A] -\$0.14
[B] 0.46
[C] 0.14
[D] 0.35
[E] -0.4
33. Repeat the above problem if the question was: how much (on the average) does the contestant gain on each play?
[A] -\$0.14
[B] 0.46
[C] 0.14
[D] 0.35
[E] -0.4
*34. There are two urns a and b. Urn a contains 2 red balls and 1 blue ball; urn b contains 1 red ball and 1 blue ball. An experiment consists of drawing a ball at random from urn a, noting its color, placing it in urn b, and then drawing a ball at random from urn b and noting its color. A random variable X is defined by assigning to each outcome the total number of red balls drawn. Find the expected value of X
[A] 7/9
[B] 5/9
[C] 11/9
[D] 13/9
[E] 4/9
35. An experiment consists of selecting 2 coins from a collection of 3 nickels, 2 dimes, and 1 quarter. What is the expected value?
[A] 20
[B] 30
[C] 15
[D] 25
[E] 10

* 36. A student is taking a quiz with 4 questions, and each questions has 5 possible answers with only one correct response. A passing grade is answering at least 50% of the questions correctly. What is the probability that the student passes the test if he is guessing every answer?
[A] 0.175
[B] 0.1808
[C] 0.2405
[D] 0.3505
[E] 0.2805

37. Using the following data regarding the price of microwave ovens:
$\$ 450, \$ 420, \$ 440, \$ 440, \$ 485, \$ 450$, and $\$ 500$. Find the median and the mode
[A] $(440),(440,450)$
[B] $(455),(450,450)$
[C] (420) , (450)
[D] $(450),(440,450)$
[E] (440) , (450)
38. Compute the expected value for the following table:

Scores (x)	Frequency	P	
0	2		
1	3		
2	2		
3	3		
Total	10		

[A] 2.6
[B] 1.6
[C] 1.5
[D] 2.5
[E] 1.4
39. A team of 2 people to be selected out of 5 men and 5 women. A random variable X is defined to be the number of men selected. Find the standard deviation. (hint: create a table and find the expected value, then create another table to find the variance and the standard deviation)
[A] 0.444
[B] 1
[C] 0.333
[D] 0.222
[E] 0.667

* 40. The entrance exam at a university is normally distributed with a mean of 520 and a standard deviation of 75 . If only the top 10% of the students are accepted. Approximately, what is the lowest score for admittance into the university? (round your answer)
[A] 625
[B] 630
[C] 617
[D] 610
[E] 600

