Chapter 4 Recap Set

1. An urn contains 5 white balls and 3 black balls. If 3 balls are randomly selected (at once, without replacement), what is the probability that at least 1 ball is black?
2. Let $\operatorname{Pr}[\mathrm{A}]=0.4, \operatorname{Pr}[B]=0.45$, and $\operatorname{Pr}[\mathrm{A} \cap B]=0.2$. Determine $\operatorname{Pr}[\mathrm{A} \mid \mathrm{B}] .=0.44$
3. A fair die is rolled 9 times. The roll is considered a success if the die shows a " 4 ". Find the probability that there will be exactly 3 successes in 9 rolls.

$$
=0.1302
$$

4. An urn contains 3 red, 6 white, and 4 blue marbles. Three marbles are selected at random and without replacement. What is the probability that one of each color is selected?

$$
=0.252
$$

5. It is known that 5% of a school's athlete population uses drugs. The Athletic Director gives a drug test which registers correctly as positive in 94% of the cases where the drug is present and correctly as negative in 98% of the cases where the drug is absent. One athlete is randomly selected and tested. Find the probability that the athlete is NOT a drug user, given that the test result is negative.

$$
99.68 \%
$$

6. Given independent events, A and B, such that $\operatorname{Pr}[A]=0.36$ and $\operatorname{Pr}[B]=0.06$. Determine $\operatorname{Pr}[A \cup B]$.

$$
0.3984
$$

7. A group composed of 4 men and 6 women is to randomly select a committee of 3 people. Find the probability that all 3 are women given that all 3 are of the same gender.

$$
0.9375
$$

8. A survey shows that 14% of students at Indy High have dogs and 71% have laptops. Assuming these two events are independent, what is the probability that a randomly selected Indy High student has neither a dog nor a laptop?

$$
0.2494
$$

9. A basketball player makes free throws with a 0.6 probability. What is the probability that the player will make at least 5 of the next 6 free throws?

$$
0.2333
$$

10. There are four coins in your pocket; three coins are fair and one is two-headed. You randomly select a coin and flip it. What is the probability of getting heads on the flip?

$$
0.629
$$

Test 4 , Ch 4 Extwaproble

$$
5 \omega, 3 B \longrightarrow 3 \text { Selcte } \longrightarrow P=\frac{\text { ot last | Black }}{C(8,3)}
$$

$$
=1-P(\phi B)=1-\frac{c(8,3)}{c(8,3)}=1-\frac{10}{56}=0.82
$$

$$
\text { or } \quad P=\frac{c(3,1) \cdot c(5,2)+c(3,2) \cdot c(5,1)+c(3,3)}{56}
$$

$$
=\frac{30+15+1}{56}=0.82
$$

2)

$$
\begin{aligned}
& P(A)=0.4, \quad P(B)=0.45, \quad P(A \cap B)=0.2 \\
& P(A \mid B)=\frac{0.2}{0.45}=0.44 \\
& P(B \mid A)=\frac{0.2}{0.4}=0.5
\end{aligned}
$$

3)

$$
\begin{array}{ll}
P(4)=1 / 6 & q=5 / 6 \\
C(9,3)\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{6}=0.1302
\end{array}
$$

4) $3 R, 6 \mathrm{~W}, 4 \mathrm{~B} \longrightarrow 3$ Selecter

$$
\begin{aligned}
P(\text { one feach })=\frac{C(3,1) \cdot C(6,1) \cdot C(4,1)}{C(13,3)} & =\frac{72}{286} \\
& =0.252
\end{aligned}
$$

5)

$$
\begin{aligned}
P\left(D^{\prime} \mid N\right) & =\frac{(95)(98)}{(5)(6)+(95)(98)} \\
& =\frac{9310}{9340}=999.68 \%
\end{aligned}
$$

$$
P\left(N \mid 0^{\prime}\right)=98 \%
$$

Indep, $\quad P(A)=0.36, \quad P(B)=0.06$

$$
\begin{aligned}
P(A \cup B) & =0.36+0.06-(0.06)(0.36) \\
& =0.3984
\end{aligned}
$$

7) $4 M$ of $6 \omega \longrightarrow P(3 \omega / 3$ same Cenbu $)$

$$
=\frac{C(6,4)}{C(4,4)+C(6,4)}=\frac{15}{16}=93.75 \%
$$

8) $P($ Dogs $)=14 \%, \quad P(\operatorname{loptop})=71 \%$

$\underline{\theta}$ Imolep $\quad P(D \cap L)=(0.14)(0.71)$

$$
\begin{aligned}
P\left(D^{\prime} \cap L^{\prime}\right) & =(0.86)(0.29) \\
& =0.2494
\end{aligned}
$$

9) $\quad p(0.6) ; \quad q=0.4$

$$
\begin{aligned}
& (0.6) ; C(6,5)(0.6)^{5}(0.4)^{1}+C(6,6)(0.6)^{6}(0.4)^{0} \\
& =0.1866+0.0467=0.2333
\end{aligned}
$$

10)

$$
\begin{array}{rlrl}
3 / 4, F-\frac{1 / 2}{1 / 2} T * & P(H) & =\frac{3}{4} \cdot \frac{1}{2}+\frac{1}{4} \\
1 / 4 \\
& =\frac{3}{8}+\frac{2}{8} \\
& =5 / 8=0.625
\end{array}
$$

