Math M118

Section 9.1: Transition Matrices

• In Section 4.4, Bernoulli Trails:

The probability of each outcome is <u>independent</u> of the outcome of any previous experiments and the probability <u>stays the same</u>.

Ex. 1: Computer chips are manufactured with 5% defective. Fifteen are drawn at random from an assembly line by an inspector, what is the probability that he will find 3 defective chips?

Ex. 2: Flipping a fair coin 30 times, the probability stays the same and does not depend on the previous result.

• In Section 9.1, Markov Chain:

What happens next is governed by what happened immediately before. (see the next Examples)

Ex. 3: An independent landscape contractor works in a weekly basis.

Each week he works (W), there is a probability of 80% that will be called again to work the following week. Each week he is not working (N), there is a probability of only 60% that he will be called again to work.

Draw the tree for all possibilities of 2 weeks from now and show all probabilities. Note: You need to draw 2 different trees, one if he is working now and the other if he is not. We cannot start from one point covering the initial states with one branch for W and the other for N since it is not given to us and we cannot assume it 50% each.

Use the tree to find

- a) The probability that if he is working now, then he will be working in 2 weeks.
- b) The probability that if he is not working now, then he will be working in 2 weeks.

Ex. 4: Use the information of example 3 again and find:

- a) The **Transition Matrix**. Show all probabilities and make sure the sum per row = 1
- b) The **Transition Diagram.** Show all probabilities and make sure: the sum of probabilities leaving a nod + itself = 1
- c) The probability that if he is working now, then he will be working in 2 weeks
- d) The probability that if he is <u>not</u> working now, then he will be working in 2 weeks
- e) The probability that if he is working now, then he will be working in 4 weeks

- **Ex. 5:** A study by an overseas travel agency reveals that among the airlines: American, Delta and United, traveling habits are as follows:
 - If a customer has just traveled on American, there is a 50% chance he will choose American again on his next trip, but if he switches, he is just likely to switch to Delta or United.
 - If a customer has just traveled on Delta, there is a 60% chance he will choose Delta again on his next trip, but if he switches, he is three times as likely to switch to American as to United.
 - If a customer has just traveled on United, there is a 70% chance he will choose United again on his next trip, but if he switches, he is twice as likely to switch to Delta as to American.
 - a) Find the probability transition matrix
 - b) Find the transition diagram
 - c) Find the matrix that describes the customers habits two trips from now, then find the probability that a current Delta ticket holder will <u>not</u> travel on Delta the next time after
 - d) Find the matrix that describes the customers habits three trips from now, then find the probability that a current American ticket holder will switch to United three trips from now.
- **Ex. 6:** A market analyst is interested in whether consumers prefer Dell or Gateway computers. Two market surveys taken one year apart reveals the following:
 - 10% of Dell owners had switched to Gateway and the rest continued with Dell.
 - 35% of Gateway owners had switched to Dell and the rest continued with Gateway.

At the time of the first market survey, 40% of consumers had Dell computers and 60% had Gateway.

- a) What percentage will by their next computer from Dell?
- b) What percentage will buy their second computer from Dell?
- c) Suppose that each consumer buy a new computer each year, what will be the market distribution after 4 years?

 $P_n = P_0 T^n$ (P_0 : the initial state vector, T: the transition matrix)

- **Ex. 7:** Suppose that taxis pick up and deliver passengers in a city which is divided into three zones: *A*, *B* and *C*. Records kept by the drivers show that:
 - Of the passengers picked up in zone *A*, 50% are taken to a destination in zone *A*, 40% to zone *B*, and 10% to zone C.
 - Of the passengers picked up in zone *B*, 40% go to zone *A*, 30% to zone *B*, and 30% to zone *C*.
 - Of the passengers picked up in zone C, 20% go to zone A, 60% to zone B, and 20% to zone C.

Suppose that at the beginning of the day 60% of the taxis are in zone A, 10% in zone B, and 30% in zone C.

- a) What is the distribution of taxis in the various zones after all have had one rider?
- b) What is the distribution of taxis in the various zones after all have had two riders?
- c) What is the distribution of taxis in the various zones after all have had four riders

Section 9.2: Regular Markov Chains

Irreducible Markov Chain: When all its states communicate with each others. (It is strongly recommended to draw the transition diagram)

Ex. 1: Determine if the following is irreducible: $T = \begin{bmatrix} 0.25 & 0.75 \\ 0.65 & 0.35 \end{bmatrix}$ **Ex. 2**: Determine if the following is irreducible: $T = \begin{bmatrix} 0.2 & 0.4 & 0.4 \\ 0.3 & 0 & 0.7 \\ 0 & 0 & 1 \end{bmatrix}$

Note: Anytime a state is communicating only with itself as in state 3, the matrix is not irreducible.

0.6	0	0.4]
Ex. 3 : Determine if the following is irreducible: $T = \begin{bmatrix} 0.6 \\ 0.2 \\ 0 \end{bmatrix}$	0	0.8	
0	0.8	0.2	
0.3	0	$\begin{array}{cccc} 0 & 0.7 & 0 \\ .2 & 0 & 0.8 \end{array}$	
Fx 4: Determine if the following is irreducible: $T = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0.2		
0.6	0	0.4	0
Ex. 4 : Determine if the following is irreducible: $T = \begin{bmatrix} 0.3 \\ 0 \\ 0.6 \\ 0 \end{bmatrix}$	0.2	0	0.8

- **Regular Markov Chain:** A transition matrix is regular when there is power of T that contains all positive no zeros entries.
 - a) If the transition matrix is not irreducible, then it is not regular
 - b) If the transition matrix is irreducible and at least one entry of the main diagonal is nonzero, then it is regular
 - c) If all entries on the main diagonal are zero, but T^n (after multiplying by itself *n* times) contain all positive entries, then it is regular

Ex. 5: Determine which of the following matrices is regular:

a) $T = \begin{bmatrix} 0.6 & 0.4 \\ 0.2 & 0.8 \end{bmatrix}$ b) $T = \begin{bmatrix} 0.5 & 0.5 \\ 1 & 0 \end{bmatrix}$ c) $T = \begin{bmatrix} 1 & 0 & 0 \\ 0.25 & 0.5 & 0.25 \\ 0 & 1 & 0 \end{bmatrix}$

- a) yes, all entries are positive
- b) yes because $T^2 = \begin{bmatrix} 0.75 & 0.25 \\ 0.5 & 0.5 \end{bmatrix}$ has only positive entries. You can also look at it as irreducible matrix with at least one element in the main diagonal not equal to zero.
- c) No, because it is not irreducible. Also, if you multiply it by itself over and over it will still contain zeros

Ex. 6: Previously in section 9.1, we had the following example:

A market analyst is interested in whether consumers prefer Dell or Gateway computers. two market surveys taken one year apart reveals the following:

- 10% of Dell owners had switched to Gateway and the rest continued with Dell.
- 35% of Gateway owners had switched to Dell and the rest continued with Gateway.

If a consumer has Dell Computer now:	If a consumer has Gateway Computer now:
Now: [1 0]	Now: [0 1]
After 1 year:	After 1 year:
$\begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.9 & 0.1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.35 & 0.65 \end{bmatrix}$
After 2 year:	After 2 year:
$\begin{bmatrix} 0.9 & 0.1 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.85 & 0.16 \end{bmatrix}$	$\begin{bmatrix} 0.35 & 0.65. \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.54 & 0.46 \end{bmatrix}$
After 3 year:	After 3 year:
$\begin{bmatrix} 0.85 & 0.16 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.81 & 0.19 \end{bmatrix}$	$\begin{bmatrix} 0.54 & 0.46 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.65 & 0.35 \end{bmatrix}$
After 4 year:	After 4 year:
$\begin{bmatrix} 0.81 & 0.19 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.8 & 0.2 \end{bmatrix}$	$\begin{bmatrix} 0.65 & 0.35 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.71 & 0.29 \end{bmatrix}$
After 5 year:	After 5 year:
$\begin{bmatrix} 0.8 & 0.2 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.79 & 0.21 \end{bmatrix}$	$\begin{bmatrix} 0.71 & 0.29 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.74 & 0.26 \end{bmatrix}$
After 6 year:	After 6 year:
$\begin{bmatrix} 0.79 & 0.21 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$	$\begin{bmatrix} 0.74 & 0.26 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.76 & 0.24 \end{bmatrix}$
After 7 year:	After 7 year:
$\begin{bmatrix} 0.78 & 0.22 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$	$\begin{bmatrix} 0.76 & 0.24 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.77 & 0.23 \end{bmatrix}$
After 8 year:	After 8 year:
$\begin{bmatrix} 0.78 & 0.22 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$	$\begin{bmatrix} 0.77 & 0.23 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$ After 9 year:
After 9 year:	After 9 year:
$\begin{bmatrix} 0.78 & 0.22 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$	$\begin{bmatrix} 0.78 & 0.22 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$

• After certain years, the probability stabilizes at 78% for Dell and 22% for Gateway. Notice that whether we start with Gateway or Dell, the result is the same and that is not accidental.

- The state vector of $P = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$ is called the **Steady State Vector** where: P.T = P (*multiplying the Steady State Vector by the Transition Matrix = the Steady State Vector.*)
- The above can only applied on **Regular** Markov chain

Ex. 7: The same example again:

A market analyst is interested in whether consumers prefer Dell or Gateway computers. two market surveys taken one year apart reveals the following:

- 10% of Dell owners had switched to Gateway and the rest continued with Dell.
- 35% of Gateway owners had switched to Dell and the rest continued with Gateway.

Find the distribution of the market after "a long period of time".

Solution:

The answer is in finding the	he Steady State Vector P	where: $P.T = P$
Η	$\mathbf{P} = \begin{bmatrix} p_1 & p_2 \end{bmatrix} \qquad ;$	$T = \begin{bmatrix} 0.9 & 0.1\\ 0.35 & 0.65 \end{bmatrix}$
P.T = P then : [,	$p_1 p_2] \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = [p_1]$	$p_1 p_2$]
Or: 0	$0.9p_1 + 0.35p_2 = p_1$	
	$0.1p_1 + 0.65p_2 = p_2$	

Simplify the above equations by moving all variable to one side:

$$-0.1p_1 + 0.35p_2 = 0$$
$$0.1p_1 - 0.35p_2 = 0$$

The two equations are dependent and have infinite number of solutions. We must add another equation in order to get the answer: $p_1 + p_2 = 1$

Now, use the Echelon's Method to solve:

$$-0.1p_1 + 0.35p_2 = 0$$

 $0.1p_1 - 0.35p_2 = 0$
 $p_1 + p_2 = 1$

It makes it easier if you multiply the first and the second equation by 100 to remove the decimal:

p_1	p_2	
-10*	35	0
10	-35	0
1	1	1
-10	35	0
0	0	0
0	-45	-10
-10	35	0
0	-45*	-10
-45	0	-35
0	-45	-10
1	0	0.78
0	1	0.22

Remove the line with all zeros

The answer is $p_1 = 78\%$ and $p_2 = 22\%$ which is the same answer we got in example 6 when we did it the long way.

Ex. 8: Suppose that General Motors (GM), Ford (F), and Chrysler (C) each introduce a new SUV vehicle.

- General Motors keeps 85% of its customers but loses 10% to Ford and 5% to Chrysler.
- Ford keeps 80% of its customers but loses 10% to General motors and 10% to Chrysler.
- Chrysler keeps 60% of its customers but loses 25% to General Motors and 15% to Ford..

Find the distribution of the market in the long run.

Solution: Lets assume the probabilities to be x for GM, y for F and z for C just to make it easier to solve

$$P = \begin{bmatrix} x & y & z \end{bmatrix} ; \qquad T = \begin{bmatrix} 0.85 & 0.1 & 0.05 \\ 0.1 & 0.8 & 0.1 \\ 0.25 & 0.15 & 0.6 \end{bmatrix}$$
$$P.T = P \text{ then} : \begin{bmatrix} x & y & z \end{bmatrix} \cdot \begin{bmatrix} 0.85 & 0.1 & 0.05 \\ 0.1 & 0.8 & 0.1 \\ 0.25 & 0.15 & 0.6 \end{bmatrix} = \begin{bmatrix} x & y & z \end{bmatrix}$$
$$Or: \qquad 0.85x + 0.1y + 0.25z = x$$

0.05x + 0.1y + 0.6z = z

0.1x + 0.8y + 0.15z = y

Simplify the above equations by moving all variable to one side:

$$-0.15x + 0.1y + 0.25z = 0$$

$$0.1x - 0.2y + 0.15z = 0$$

$$0.05x + 0.1y - 0.4z = 0$$

and: x + y + z = 1

It makes it easier if you multiply the first 3 equations by 100 to remove the decimal:

		1.2	1
X	У	z	
-15*	10	25	0
10	-20	15	0
5	10	-40	0
1	1	1	1
-15	10	25	0
0	200*	-475	0
0	-200	475	0
0	-25	-40	-15
200	0	-650	0
0	200	-475	0
0	0	0	0
0	0	1325	200
200	0	-650	0
0	200	-475	0
0	0	1325*	200
1325	0	0	650
0	1325	0	475
0	0	1325	200
1	0	0	0.49
0	1	0	0.36
0	0	1	0.15

Remove the line with all zeros

GM = 49%Ford = 36% Chrysler = 15%