Mike Boyle

Entropy on shrinking scales, and the entropy theory of symbolic extensions

Abstract: This talk is based on the papers [BD, D, DN] listed below. I will expand on the items below.

- **1. Extension entropy.** Consider a homeomorphism T of a compact metric space X. By a symbolic extension of (X,T) we mean a subshift (Y,S) with a factor map φ onto the system (X,T). Given such a map, we define the symbolic extension entropy function h_{ext}^{φ} on the space \mathcal{M}_T of T-invariant Borel probabilities, by setting $h_{\text{ext}}^{\varphi}(\mu) = \max\{h(S,\nu) : \varphi\nu = \mu\}$.
- **2. Entropy structure.** An entropy structure for (X,T) will be an allowed sequence of u.s.c. (upper semicontinuous) functions h_n on \mathcal{M}_T , converging to the entropy function h, with all differences $h_n h_{n-1}$ also u.s.c. The general determination of "allowed" is a complicated business, but here is one example which gives the right intuition. Suppose the system (X,T) admits a sequence of partitions P_n with small boundaries (the boundary of the closure of each partition element has μ measure zero for every μ in \mathcal{M}_T), and with the maximum diamater of elements of P_n going to zero as $n \to \infty$. Then the sequence h_n defined by $h_n(\mu) = h(\mu, P_n)$ is an entropy structure for (X,T). There are more complicated constructions which provide entropy structures for any system.
- 3. Sex Entropy Theorem. (We use "sex entropy" to abbreviate "symbolic extension entropy.) Suppose (h_n) is an entropy structure. A bounded function E on \mathcal{M}_T such that every $E h_n$ is u.s.c. is called a *superenvelope* of the entropy structure. The main result of [BD] is the Sex Entropy Theorem: a bounded function on \mathcal{M}_T is a symbolic extension entropy function if and only if it is affine and a superenvelope of the entropy structure.
- 4. The function h_{sex} . The infimum of the symbolic extension entropy functions h_{φ} above is called the *symbolic extension entropy function* and denoted h_{sex} . This u.s.c. function is a very fine probe into the complexity of the system (X,T), and evidently is intimately connected with the way entropy emerges on ever smaller scales. The Sex Entropy Theorem leads to a variety of results, estimates and examples. For one thing: the maximum of h_{sex} need not be assumed on an ergodic measure. For another: the infimum of the topological entropies of symbolic extensions of (X,T) need not be achieved. For another: the infimum of the entropies of symbolic extensions of (X,T) (the topological sex entropy of T) equals the maximum of h_{sex} .
- **4.** The subtlety of sex entropy. Starting with an entropy structure (h_n) , there is an inductive construction of functions u_{α} (with $u_{\alpha} \leq u_{\beta}$ when $\alpha < \beta$) such that $h_{\text{sex}} h = u_{\alpha}$ if $u_{\alpha} = u_{\alpha+1}$. The construction always terminates at some countable ordinal α but the induction in general is transfinite. This indicates the subtlety of even the topological sex entropy of T, in contrast to the usual topological entropy.
- 5. Shrinking scales and entropy structures. As sex entropy is extremely subtle and is still only a reflection of how entropy emerges on shrinking scales, we appreciate the problem of finding appropriate structures to describe "emergence of entropy on shrinking scales". The approach of Downarowicz [D] has been to use entropy structures. He defines an appropriate

equivalence relation on sequences of functions, and declares sequences which are equivalent to the entropy structures of [BD] to be also entropy structures, and constructs them in various natural ways. The equivalence class for a system is a master entropy invariant, determining in particular the entropy function on measures and the set of symbolic entropy functions. It is a previously unseen ghost in the machine, ruling all of entropy; not always accessible, but accessible enough for theorems, examples and sometimes estimates.

6. Smooth examples. Building from [BD], for $1 \le \alpha < \infty$, Downarowicz and Newhouse constructed certain generic families of C^{α} diffeomorphisms with topological symbolic extension entropy strictly greater than the topological entropy.

REFERENCES

- [BD] M. Boyle and T. Downarowicz, The entropy theory of symbolic extensions, Math. Inventiones to appear.
- [D] T. Downarowicz, Entropy Structure, preprint (2003).
- [DN] T. Downarowicz and S. Newhouse, Symbolic extensions in smooth dynamical systems, preprint (2002).