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Abstract. We introduce a way of measuring nonconvexity of a metric space. We
apply it to define a broad generalization and refinement of the classical curvature
of a curve. We also use it to introduce a natural new notion of a fractal set.

1. Introduction

It is natural when investigating properties of a metric space to focus on the points
and subsets of this space. But what about what is not in the space, what is “missing”?
We propose here a way of measuring this missing part. One can think about it as
measuring what could be called the nonconvexity of the space. We apply this idea
to define a broad generalization and refinement of the classical curvature of a curve,
and compute it for a variety of examples. We also use it to introduce a natural new
notion of a fractal set.

A metric space is said to have midpoints if for every pair of points there is a point
whose distance to each of them is half the distance between them. We define a
quantity, the gap of the space, which is a measure of its failure to have midpoints.
The gap can be interpreted as the size of the largest hole, or perhaps more accurately
as a measure of the nonconvexity of the space.

While our initial interest in the gap of a metric space was inspired by global con-
siderations, we show here how its local behavior can be used to give a far-reaching
generalization of the classical curvature of a curve.

Given a point in our metric space, we can look at how the gap of a ball centered at
the point shrinks with its radius r. If the gap scales like rp, we say that the space has
tryposity of order p at the point, and the p-tryposity gives finer information about
its dependence on the radius. In the case that the space is a curve, we also use the
term flexion for tryposity, because in this case it can be interpreted as a generalized
curvature at the point.

In particular, we show that the 3-flexion of a smooth curve at a point is equal
to one quarter the square of its classical curvature. However, at a point on a curve
for which either the curve is not smooth or the curvature is zero, there may be well
defined flexion of order other than 3. In this way flexion both refines and extends the
classical notion of curvature.
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We also use the local behavior of the gap to define a new notion of a fractal set in
a metric space, called a trypofractal, and study the relation between this definition
and one based on Hausdorff dimension.

The paper is organized as follows.
In Section 2 we introduce the gap of a metric space and its p-tryposity at a point

(or p-flexion if it is a curve) for p ≥ 1, prove some basic properties, and give examples.
In Section 3 we prove that the 3-flexion of a C3 curve in Rn at a point is one

quarter the square of the curvature, so that flexion is a generalization of the classical
curvature. We make use of the fact that in this case the Menger curvature coincides
with the classical curvature.

In Section 4 we show that for every p > 1, there is a C1 planar curve with p-flexion
at a point of any positive value. In particular, when p < 3, the classical curvature
(corresponding to the 3-flexion) is undefined at this point, and when p > 3, the
classical curvature is zero.

In Section 5 we compute the 1-flexion at the vertex of a V-shaped curve making
an angle θ with the horizontal axis, and show that it is maximized when

θ = sin−1

(
1 +
√

33

8

)
≈ 1.003.

In Section 6 we find upper and lower bounds for the 1-flexion of the Koch curve,
and define the notions of trypofractal and uniform trypofractal, using the standard
Cantor set as an example.

In Section 7 we construct (non-Euclidean) curves with every point having any
prescribed p-flexion for each p ≥ 1.

In Section 8 we end with some open questions.

2. Preliminaries

Let (X, d) be a metric space. We denote by B(x, r) the closed ball in X, centered
at x ∈ X and of radius r. For x, y ∈ X we define the hyperdistance between x and y
as

hd(x, y) = 2 inf{r : there exists z ∈ X such that x, y ∈ B(z, r)}.
Next, we define the leipodistance1 between x and y by

ld(x, y) = hd(x, y)− d(x, y).

Observe that d(x, y) ≤ hd(x, y) ≤ 2d(x, y), so 0 ≤ ld(x, y) ≤ d(x, y).
While it is obvious that in general leipodistance is not a metric on X, it is not im-

mediately obvious whether hyperdistance is. Here is an example where hyperdistance
does not satisfy the triangle inequality.

Example 2.1. Let X consists of five points, X = {A,B,C,D,E}. Define the metric
in X as follows: d(A,B) = d(A,C) = d(B,D) = d(B,E) = 4, d(C,E) = 3, d(A,D) =
d(B,C) = d(C,D) = 2, and d(A,E) = d(D,E) = 1. It is easy to check that for all
10 triangles the triangle inequality is satisfied, so indeed d is a metric. However,
hd(A,B) = 8, while hd(A,D) = 2 and hd(B,D) = 4. ♦

1λείπω – to be absent, to be missing
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Now we define the gap of X as

γ(X) = sup{ld(x, y) : x, y ∈ X}.
It is immediate that any metric space with midpoints has gap zero. Here a metric

space X has midpoints if for all x, y in X there is m in X with d(x,m) = d(m, y) =
d(x, y)/2. For example, a convex set in a normed linear space has midpoints and
therefore gap zero.

Similarly, a metric space with approximate midpoints has gap zero. Here a metric
space has approximate midpoints if for all ε > 0 and for all x, y in X there is m in X
with d(x,m), d(m, y) < d(x, y)/2 + ε. In particular, every length space has gap zero.

Example 2.2. Let us compute the gap of an (n − 1)-dimensional sphere of radius
r and center x in Rn. If y, z ∈ X and the angle ∠yxz = 4α (0 < α ≤ π/4) then
d(y, z) = 2r sin 2α and hd(y, z) = 4r sinα, so ld(y, z) = 4r sinα − 2r sin 2α (see
Figure 1). Differentiating with respect to α we get 4r(cosα − cos 2α) > 0, so the
maximum is attained when α = π/4, that is, when y and z are antipodal points.
Therefore, γ(X) = 2

√
2r − 2r = 2(

√
2 − 1)r. This is proportional to r, so the gap

measures in some sense the size of the hole in the space.

x y

z

2α
α
α

Figure 1. Gap of a sphere.

Now consider Y = X ∪ {x}. Take y ∈ X. We have d(x, y) = r and hd(x, y) = 2r.
Therefore, ld(x, y) = r, so γ(Y ) ≥ r (in fact, it is easy to see that γ(Y ) = r). Since
1 > 2(

√
2 − 1), this means that adding the center to the sphere increases its gap.

While this is may seem counterintuitive, it simply means that the gap measures not
only the size of the hole, but also its shape. ♦

Lemma 2.3. The gap of X is not larger than the diameter of X. Moreover, if X is
contained in a ball of radius r then γ(X) ≤ r.

Proof. The first statement follows from the inequality ld(x, y) ≤ d(x, y). Assume now
that X is contained in a ball of radius r and take x, y ∈ X. If d(x, y) ≤ r then
ld(x, y) ≤ d(x, y) ≤ r. If d(x, y) > r, then ld(x, y) = hd(x, y) − d(x, y) < 2r − r =
r. �

Let X,X ′ be subsets of some larger space Y and let dH(X,X ′) be the Hausdorff
distance between X and X ′ (it can be infinite).
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Lemma 2.4. We have

(1) |γ(X)− γ(X ′)| ≤ 6dH(X,X ′).

Proof. If dH(X,X ′) =∞, there is nothing to prove. Assume that dH(X,X ′) is finite.
Fix a > dH(X,X ′). For any x, y ∈ X there are x′, y′ ∈ X ′ such that d(x, x′) < a and
d(y, y′) < a. Then d(x′, y′) < d(x, y) + 2a, so

(2) −d(x, y) < −d(x′, y′) + 2a.

Fix ε > 0. There exists z′ ∈ X ′ such that x′, y′ ∈ B(z′, r) for some 2r < hd(x′, y′)+
ε. There is z ∈ X such that d(z, z′) < a. Then x, y ∈ B(z, r + 2a), so hd(x, y) ≤
2r + 4a < hd(x′, y′) + ε+ 4a. This proves that

(3) hd(x, y) < hd(x′, y′) + 4a.

Adding (2) and (3) we get ld(x, y) < ld(x′, y′) + 6a. This means that for any
x, y ∈ X there are x′, y′ ∈ X ′ such that ld(x′, y′) > ld(x, y) − 6a. This proves that
γ(X ′) ≥ γ(X) − 6a. Since a was an arbitrary number larger than dH(X,X ′), we
get γ(X ′) ≥ γ(X) − 6dH(X,X ′), that is, γ(X) − γ(X ′) ≤ 6dH(X,X ′). Similarly,
γ(X ′)− γ(X) ≤ 6dH(X,X ′), so we get (1). �

There is a simple corollary to this lemma.

Corollary 2.5. If X ′ is a dense subset of X then γ(X ′) = γ(X).

Lemma 2.6. If X is a subset of a Hilbert space Y then γ(X) = 0 if and only if the
closure of X is convex.

Proof. By Corollary 2.5, γ(X) = γ(X). If X is convex, then clearly X has midpoints
so γ(X) = 0.

If X is not convex, then (since X is closed) there exist points x, y ∈ X, such that
if I is the segment joining x and y, then I \ {x, y} is disjoint from X.

By translating X, we may assume that y = −x. Suppose that ld(x,−x) = 0. Then
for every ε > 0 there is z ∈ X such that ‖z − x‖ < ‖x‖ + ε and ‖z + x‖ < ‖x‖ + ε.
There is a point z′ ∈ I such that z−z′ is orthogonal to x. One of the numbers ‖z′−x‖
and ‖z′ + x‖ is larger than or equal to ‖x‖. We may assume that it is ‖z′ + x‖. We
have ‖x‖ ≤ ‖z′ + x‖ < ‖x‖+ ε and 0, x, z′ belong to I, so ‖z′‖ < ε. We have

‖x‖2 + ‖z − z′‖2 ≤ ‖z′ + x‖2 + ‖z − z′‖2 = ‖z + x‖2 ≤ (‖x‖+ ε)2.

Therefore, ‖z − z′‖2 ≤ 2ε‖x‖+ ε2, so ‖z‖2 < 2ε‖x‖+ 2ε2. Since ε > 0 was arbitrary,
it follows that 0 ∈ X, a contradiction. �

It is natural to suspect that the above lemma holds for any normed linear space Y .
However, this is not the case.

Example 2.7. Let Y be the plane R2 with the maximum norm, that is, ‖(x, y)‖ =
max(|x|, |y|). Let I ⊂ R be an interval (in the general meaning, bounded or not), and
let f : I → R be a function, Lipschitz continuous with constant 1. Let X ⊂ Y be the
graph of f . Then, for x, y ∈ I we have

d((x, f(x)), (y, f(y))) = max(|x− y|, |f(x)− f(y)|) = |x− y|.
Thus, the map h : X → I, given by h(x, f(x)) = x, is an isometry. Therefore,
γ(X) = γ(I) = 0, although X is not convex unless f is affine. ♦
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Nevertheless, a similar set in the same space can have positive gap.

Example 2.8. Let Y be as in the preceding example, I = [−1, 1], and let X be the
union of the graphs of functions f, g : I → R, given by f(x) = |x|−1 and g(x) = 1−|x|
(a “diamond”). Take points a = (1/2, 1/2) and b = (−1/2,−1/2). Their distance is
1. If their leipodistance is 0, then their hyperdistance must be 1, so the intersection
of the balls B(a, 1/2) and B(b, 1/2) (in X) has to be nonempty. However, those balls
are equal to the intersection of X with the first and third quadrants, respectively, so
their intersection is empty. This proves that γ(X) > 0. ♦

Lemma 2.9. If X is a nonempty subset of R with the usual metric, then the gap of
X is the supremum of lengths of bounded components of R \X.

Proof. By Corollary 2.5, we can assume that X is closed in R. If (a, b) is a component
of R \X, then a, b ∈ X, and ld(a, b) = b − a, so γ(X) is larger than or equal to the
length of (a, b).

On the other hand, if x, y ∈ X, with x < y, look at the midpoint z of [x, y]. If
z ∈ X, then ld(x, y) = 0. Otherwise, z belongs to some component (a, b) of R \ X.
Suppose that z − a ≤ b− z. Then

ld(x, y) = 2(y − a)− (y − x) = x+ y − 2a = 2(z − a) ≤ (z − a) + (b− z) = b− a.
Similarly, if z− a ≥ b− z, we also get ld(x, y) ≤ b− a, so in both cases ld(x, y) is not
larger than the supremum of lengths of bounded components of R \X. �

In the rest of the paper we will concentrate on the local behavior of the gap in the
neighborhood of a point. If (X, d) is a metric space, x ∈ X, and p ≥ 1, we define the
lower p-tryposity2 and the upper p-tryposity of X at x by

Φp(X, x) = lim inf
r→0

γ(B(x, r))

rp
, Φp(X, x) = lim sup

r→0

γ(B(x, r))

rp
.

If Φp(X, x) = Φp(X, x), we will call it the p-tryposity of X at x and denote it by

Φp(X, x). Observe that by Lemma 2.3, we always have Φ1(X, x) ≤ 1.
Note that we allow p-tryposities to be 0 or infinity. However, each of Φp(X, x) and

Φp(X, x) is an increasing function of p, and is positive finite for at most one value of p.
If there is p > 1 such that Φq(X, x) = 0 for all q < p and Φq(X, x) =∞ for all q > p,
then we will say that the tryposity of X at x has order p. Moreover, if Φ1(X, x) > 0,
we will say that the tryposity of X at x has order 1, and if Φq(X, x) = 0 for all q ≥ 1
we will say that the tryposity has infinite order, or that the total tryposity of X at x
is zero. In all other cases, we will say that the order of the tryposity of X at x does
not exist.

In particular, if there is p such that 0 < Φp(X, x) < Φp(X, x) <∞, then the order

is p. If there are p < q such that Φp(X, x) > 0 and Φq(X, x) <∞, then the order of
the tryposity of X at x does not exist.

A convex subset or an open subset of a normed linear space are trivial examples of
a space whose total tryposity at every point is zero: a ball in such a subset centered
at any point and with sufficiently small radius is convex, so the gap of this ball is 0.

It is easy to give an example where the order of the tryposity does not exist.

2τρύπα – hole
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Example 2.10. Let X = {an : n = 1, 2, 3, . . . } ∪ {0}, where an = 1/22n . We have
B(0, an+1) = B(0, an/2), so by Lemma 2.9, the gap of this ball is an+1 − an+2. Since
limn→∞ an+2/an+1 = 0 and an+1 = a2n, we get

(4) lim
n→∞

γ(B(0, an+1))

an+1

= 1, but lim
n→∞

γ(B(0, an/2))

(an/2)2
= 4.

Therefore, the order of the tryposity of X at 0 does not exist. ♦

Similar examples can be constructed to show that even when the tryposity has
order p, the p-tryposity can be 0 or infinity.

Example 2.11. LetX = {an : n = 1, 2, 3, . . . }∪{0}, where an is defined by induction:

a1 = 1/2, and an+1 = an + a2n
log an

. It is a standard exercise to check that the sequence

(an) decreases and converges to 0. If an ≤ r < an−1, then by Lemma 2.9 we have

γ(B(0, r)) = an − an+1 =
a2n

− log an
.

Hence, the tryposity of X at 0 has order 2, and since

lim
n→∞

an
an−1

= lim
n→∞

an−1 +
a2n−1

log an−1

an−1
= 1 + lim

n→∞

an−1
log an−1

= 1,

we get

Φ2(X, 0) = lim
n→∞

a2n
− log an

a2n
= lim

n→∞

1

− log an
= 0.

♦

Example 2.12. We make the same construction as in Example 2.11 with one differ-

ence. Instead of setting an+1 = an + a2n
log an

, we set an+1 = an + a2n log an. Then the

computations are very similar (in particular, the tryposity of X at 0 has order 2),
but we get

Φ2(X, 0) = lim
n→∞

−a2n log an
a2n

= − lim
n→∞

log an =∞.

♦

We will also use the term flexion for tryposity if X is a curve. We will see that flex-
ion gives a substantial generalization of the usual curvature, with 3-flexion essentially
recovering the classical curvature, higher order flexion enabling us to distinguish be-
tween for example a quartic and a sextic at the origin, and lower order flexion enabling
us to deal with cases where the curvature is undefined, for example corners.

3. Curves with nonzero curvature

In this section we will consider a simple regular curve Γ in the Euclidean space Rn,
of class C3. It turns out that we can compute the curvature of Γ using the gap. Note
that in such a way we use only the metric on Γ, inherited from Rn, and we can forget
about the rest of Rn. In 1930 K. Menger used an idea in the same spirit to define
what we call now the Menger curvature (see [Me]). In the situation considered above
it turns out to be equal to the classical curvature.
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Let x, y, z be three distinct points of Γ. Denote by kM(x, y, z) the reciprocal of
the radius of the circle passing through those points (if they are collinear, then
kM(x, y, z) = 0). The following theorem is proved in [BM] as Theorem 10.5 there.

Theorem 3.1. Assume that n = 3 and fix P ∈ Γ. Then the limit of kM(x, y, z), as
distinct points x, y, z ∈ Γ converge to P , exists and is equal to the classical curvature
of Γ at P .

Since we want to work in Rn with n possibly larger than 3, we have to generalize
this theorem.

Theorem 3.2. Fix P ∈ Γ. Then the limit of kM(x, y, z), as distinct points x, y, z ∈ Γ
converge to P , exists and is equal to the classical curvature of Γ at P .

Proof. We want to modify the proof from [BM] to avoid using the assumption that
n = 3. In the statement of the theorem there, the authors choose the parametrization
of the curve by arc length. Then the proof starts with choosing the coordinate system
in which P is the origin, assuming that the parametrization starts there, and the
unit tangent vector is (1, 0, . . . , 0). Thus, if the parametrization is (x1, . . . , xn), then
xi(0) = 0 for all i, x′1(0) = 1, and x′i(0) = 0 for all i > 1.

After that the proof (based on the notion of the Haantjes curvature [Ha], which
was earlier shown to be equivalent to the Menger curvature) does not use the as-
sumption that the dimension is 3, until it comes to the proof that x′′′1 (0) = −κ2 and∑n

i=1(x
′′
i (0))2 = κ2, where κ is the classical curvature of Γ at the origin. Here the

authors invoke the Frenet-Serret formulas, which require that n = 3.
However, those formulas are not necessary. The formula

∑n
i=1(x

′′
i (0))2 = κ2 is

well known, and often is used as the definition of κ. In order to get the formula
x′′′1 (0) = −κ2, observe that

∑n
i=1(x

′
i(t))

2 = 1 for all t. Differentiating both sides
twice, we get

n∑
i=1

(
x′′′i (t)x′i(t) + (x′′i (t))

2
)

= 0.

Evaluating at t = 0 we get x′′′1 (0) + κ2 = 0, and this completes the proof. �

We have two natural metrics on Γ, one given by arc length, and the other inherited
from Rn (this metric will be denoted d). They may be quite different. It may happen
that the points are close to each other one in Rn, but far from each other along the
curve. However, the situation is much better locally.

Let us call a subset of a curve, which is connected and consists of more than
one point (so it is a curve itself), a subcurve. Moreover, let us say that a curve
parametrized by a function α has the monotone distance property (MDP) if for ev-
ery t1, t2, t3 such that t1 < t2 < t3 we have d(α(t1), α(t2)) < d(α(t1), α(t3)) and
d(α(t2), α(t3)) < d(α(t1), α(t3)). Clearly, this property does not depend on the choice
of a parametrization. Of course, every subcurve of a curve with MDP also has MDP.

Let us return to our curve Γ.

Lemma 3.3. Let α : [a, b] → Rn be a parametrization of Γ by the arc length. Then
for every t0 ∈ (a, b) there exists ε > 0 such that a ≤ t0 − ε, t0 + ε ≤ b, and the
subcurve α([t0 − ε, t0 + ε]) has MDP.
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Proof. For every t ∈ [a, b] there is a unique decomposition α′(t) = c(t)α′(t0)+v(t) such
that c(t) is a scalar and the vector v(t) is orthogonal to α′(t0). If ε > 0 is sufficiently
small then a ≤ t0 − ε, t0 + ε ≤ b, and ‖v(t)‖ < c(t) for every t ∈ [t0 − ε, t0 + ε]. Take
t1, t2, t3 such that t0 − ε ≤ t1 < t2 < t3 ≤ t0 + ε. Since for every t ∈ [t0 − ε, t0 + ε]
the vector α′(t) is contained in the (one-sided) cone C consisting of vectors of the
form ĉα′(t0) + v̂, where ‖v̂‖ < ĉ and v̂ is orthogonal to α′(t), we see that the vectors
α(t2)− α(t1) and α(t3)− α(t2) also belong to C.

If vectors ĉiα
′(t0) + v̂i, i = 1, 2, belong to C, then their scalar product is

ĉ1ĉ2 + 〈v̂1, v̂2〉 ≥ ĉ1ĉ2 − ‖v̂1‖ · ‖v̂2‖ > 0.

Therefore the scalar product of α(t2) − α(t1) and α(t3) − α(t2) is positive, so the
length of (α(t2)− α(t1)) + (α(t3)− α(t2)) = α(t3)− α(t1) (that is, d(α(t1), α(t3))) is
larger than the length of (α(t2)− α(t1)) (that is, d(α(t1), α(t2))).

The proof of the second inequality from the definition of MDP is similar. �

Remember that according to our notation, when we write B(P, r), we mean the
(closed) ball in Γ, not in Rn.

Corollary 3.4. For every point P ∈ Γ, which is not an endpoint, if r > 0 is suffi-
ciently small then B(P, r) is a subcurve of Γ and has MDP.

Proof. Use Lemma 3.3 with α(t0) = p. Take r such small that r < d(P, α(t0 − ε)),
r < d(P, α(t0 + ε)), and r is smaller than the distance from P to Γ \ B(P, r). Then
B(P, r) is a subcurve of α([t0−ε, t0+ε]). Thus, it is a subcurve of Γ and has MDP. �

We want to establish a connection between gap and curvature. Let us start with a
simple geometrical lemma.

x

y z

s

y zx1 11

Figure 2. Situation from Lemma 3.5.
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Lemma 3.5. Let distinct points x, y, z belong to a circle centered at s with radius
R > 0, and let d(x, y) = d(x, z) = %, where % < R. Then

(5) ld(y, z) =
%3

2R2

(
1 +

√
1− %2

4R2

) ,
where the leipodistance is computed in the space {x, y, z}.

Proof. The situation is depicted in Figure 2. Point y1 is the midpoint of the segment
xy, and z1 is the midpoint of xz. Point x1 is the point of intersection of the segments
sx and y1z1.

Since our space consists of three points, x, y, z, we have ld(y, z) = 2% − d(y, z).
From the right triangle sxz1 we get

d(x1, z1) =
d(x, z1)d(s, z1)

d(x, s)
=

(%/2)
√
R2 − (%/2)2

R
.

However, d(x1, z1) = d(y1, z1)/2 = d(y, z)/4, so

ld(y, z) = 2%− 2%

R

√
R2 − %2

4
= 2%

(
1−

√
1− %2

4R2

)
=

%3

2R2

(
1 +

√
1− %2

4R2

) . �
Remark 3.6. The assumption that % < R is made only to avoid discussion of cases
which are unnecessary for us. We will use this lemma only for R bounded away from
zero and % converging to zero. Note that then the expression in the parenthesis in (5)
converges to 2. Moreover, note that (5) is valid also in the case of R = ∞, that is,
when the points x, y, z collinear.

Theorem 3.7. Let Γ be a simple curve of class C3 in Rn, and let P ∈ Γ be a point
that is not an endpoint of Γ. Then

(6) Φ3(Γ, P ) =
κ2

4
,

where κ is the curvature of Γ at P . In particular, if κ 6= 0, then the flexion of Γ at P
has order 3.

Proof. For simplicity, denote

ξ(%,R) =
%3

2R2

(
1 +

√
1− %2

4R2

) .
By Corollary 3.4, if r is sufficiently small, then Ir = B(P, r)) is a subcurve of

Γ and had MDP. Let yr and zr be the endpoints of Ir. By MDP, the ball in Ir
containing both yr and zr with the smallest radius is B(P, r). Thus, by Lemma 3.5,
ld(yr, zr) = ξ(r, Rr), so γ(Ir) ≥ ξ(r, Rr), where Rr = 1/kM(P, yr, zr). As r approaches
0, by Theorem 3.2 and Remark 3.6, ξ(r, Rr)/r

3 approaches κ2/4. This proves that

lim inf
r→0

γ(B(P, r))

r3
≥ κ2

4
.
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Now fix ε > 0. If r is sufficiently small, then by Theorem 3.2 for every three
distinct points x, y, z ∈ Ir the radius R of the circle passing through x, y, z is larger
than 1/(κ+ε). When computing the hyperdistance between y and z in Ir, we minimize
the radius of the ball containing both x and y when its center x is equidistant from y
and z (that is, d(x, y) = d(x, z)). Thus, it suffices to consider only such triples. But
then we can use Lemma 3.5, and we see that ld(y, z) ≤ ξ(d(x, y), R). The function
ξ is increasing with respect to the first argument and decreasing with respect to the
second argument. Since R > 1/(κ+ ε), we get ld(y, z) ≤ ξ(d(x, y), 1/(κ+ ε)).

Either both x, y or both x, z are on the same side of P . Since Ir has MDP, it
follows that either d(x, y) ≤ r or d(x, z) ≤ r. Since d(x, y) = d(x, z), in both cases
d(x, y) ≤ r. Then ld(y, z) ≤ ξ(r, 1/(κ+ ε)), and hence

lim sup
r→0

γ(B(P, r))

r3
≤ (κ+ ε)2

4
.

Since ε can be taken arbitrarily small, this completes the proof of (6). �

4. Zero curvature or undefined curvature

The assumption of the second part of Theorem 3.7 was that the curvature of Γ at
P is nonzero. The question remains, what happens when it is equal to zero. In this
section we will investigate a family of standard examples including such situations, as
well as situations in which the usual curvature is undefined. Namely, we assume the
curve Γ in the plane is given by y = K|x|q, where q > 1 and K > 0 are real numbers,
and the point P is the origin O.

When we try to compute the leipodistance between two points on this curve (we
really need only to find out what happens when they both approach the origin), we
have to consider two possibilities: they are on different sides of the origin (including
the case when one of them is at the origin), and they are on the same side of the
origin. Let us start with the first case, which turns out to be simpler.

A

A B

B

C

DD

E

α
α

α

’

’

 ’

Figure 3. The case when A and B are on opposite sides of the origin.

Consider the situation from Figure 3, where the curve is y = K|x|q, with q > 1 and
K > 0. We assume that 0 ≤ a ≤ b. The points are A = (−a,Kaq), B = (b,Kbq),



HOLES, NONCONVEXITY, AND CURVATURE IN METRIC SPACES 11

C =
(
b−a
2
, K bq+aq

2

)
is the midpoint of AB, D = (d,Kdq) and CD is perpendicular to

AB, A′ =
(
−a,K bq+aq

2

)
, B′ =

(
b,K bq+aq

2

)
, D′ =

(
b−a
2
, Kdq

)
, E =

(
b−a
2
, 0
)
.

Let us look first at the simple case when a = b. Then d(A,B) = 2b and hd(A,B) =
2
√
b2 +K2b2q. Therefore

ld(A,B) = 2b
(√

1 +K2b2q−2 − 1
)

=
2K2b2q−1√

1 +K2b2q−2 + 1
.

This function divided by b2q−1 goes to K2 as b goes to 0. Moreover, if b (and
consequently, a) lies on the sphere centered at the origin O with radius r, then
r =
√

1 +K2b2q−2, so the ratio b/r goes to 1. Therefore,

(7) lim inf
r→0

γ(B(P, r))

r2q−1
≥ K2.

In the general case, we have

d(C,A′)

d(C,A)
=
d(C,B′)

d(C,B)
=
d(C,D′)

d(C,D)
= cosα.

Hence, d(C,B′) = d(C,B) cosα. Since the triangles CBD and CB′D′ are similar, we
get also d(D′, B′) = d(D,B) cosα, so

d(D′, B′)− d(C,B′) =
(
d(D,B)− d(C,B)

)
cosα.

Moreover, d(D′, B′) ≤ d(E,B′). Therefore (using the inequality
√

1 + x ≤ 1 + x/2),
we get

ld(A,B) = 2
(
d(D,B)− d(C,B)

)
= 2
(
d(D′, B′)− d(C,B′)

)
secα

≤ 2
(
d(E,B′)− d(C,B′)

)
secα = 2

√(b+ a

2

)2

+K2

(
bq + aq

2

)2

− b+ a

2

 secα

=
(√

(b+ a)2 +K2(bq + aq)2 − (b+ a)
)

secα

= (b+ a)

√1 +K2

(
bq + aq

b+ a

)2

− 1

 secα

≤ 1

2
(b+ a)K2

(
bq + aq

b+ a

)2

secα =
K2

2

(bq + aq)2

b+ a
secα.

Set t = a/b. We assume that 0 ≤ t ≤ 1. We have a = bt, so

ld(A,B) ≤ K2

2

(1 + tq)2

1 + t
b2q−1 secα.

We claim that (1 + tq)2/(1 + t) ≤ 2. This is equivalent to Q(t) ≤ 0, where Q(t) =
t2q + 2tq− 2t− 1. The second derivative of Q is nonnegative on [0, 1], so Q attains its
maximal value on [0, 1] at one of the endpoints. However, Q(0) = −1 and Q(1) = 0,
so Q is nonpositive on [0, 1].

In such a way we get ld(A,B) ≤ K2b2q−1 secα. Since α goes to 0 as b goes to zero,
using this inequality shows that if for the computation of the tryposity of Γ at O we
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use only the case of A and B on opposite sides of the origin, we would get

lim sup
r→0

γ(B(O, r))

r2q−1
≤ K2.

Then, together with (7), we would get Φ2q−1(Γ, O) = K2.
However, we still have to consider the case of both A and B on the same side of

the origin (see Figure 4). The natural guess would be that we will not get anything
new, but a surprise is awaiting us.

A

A B

B

C

DD
α

α
α

’

’

 ’

Figure 4. The case when A and B are on the same side of the origin.

We have now 0 ≤ a ≤ b and the points are A = (a,Kaq), B = (b,Kbq), C =
(c, ĉ) =

(
b+a
2
, K bq+aq

2

)
is the midpoint of AB, D = (d,Kdq) and CD is perpendicular

to AB, A′ = (a, ĉ), B′ = (b, ĉ), D′ = (c,Kdq).
As in the first case, we have

d(D′, B′)− d(C,B′) =
(
d(D,B)− d(C,B)

)
cosα.

However, now estimating leipodistance from above does not suffice, so we have to
make estimates from both sides. Fortunately for us, we only need to consider the
limit as b goes to 0, and in the limit some of those estimates become equalities. For
two expressions, ζ and ξ, that depend on a and b, we will write ζ ≡ ξ if the limit of
ζ/ξ is 1 uniformly in a, when b goes to 0.

In particular, as b goes to 0, α also goes to zero (uniformly in a), so we get

d(D′, B′)− d(C,B′) ≡ d(D,B)− d(C,B).

From the triangle CDD′ we get d− c = (ĉ−Kdq) tanα. Moreover,

dq − cq

d− c
< qdq−1 < qbq−1.

Therefore,

1 <
ĉ−Kcq

ĉ−Kdq
= 1 +

Kdq −Kcq

ĉ−Kdq
= 1 +K

dq − cq

d− c
tanα < 1 +Kqbq−1 tanα,
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so ĉ−Kcq ≡ ĉ−Kdq.
Now,

ld(A,B) = 2
(
d(D,B)− d(C,B)

)
≡ 2
(
d(D′, B′)− d(C,B′)

)
= 2

√(b− a
2

)2

+ (ĉ−Kdq)2 − b− a
2

 .

Let a = tb. We have

ĉ−Kdq

b− a
≡ ĉ−Kcq

b− a
=
K bq+aq

2
−K

(
b+a
2

)q
b− a

= Kbq−1
1+tq

2
−
(
1+t
2

)q
1− t

.

By L’Hospital’s rule,

lim
t→1

1+tq

2
−
(
1+t
2

)q
1− t

= lim
t→1

qtq−1

2
− 1

2
q
(
1+t
2

)q−1
−1

= −q
2

+
q

2
= 0.

Therefore ĉ−Kdq
b−a goes to 0 uniformly in a as b goes to zero. Thus,√(b− a
2

)2

+ (ĉ−Kdq)2 − b− a
2

/ (ĉ−Kdq)2

b− a
=

2√
1 +

(
2(ĉ−Kdq)

b−a

)2
+ 1

goes to 1 uniformly in a as b goes to zero. Therefore

ld(A,B) ≡ 2
(ĉ−Kdq)2

b− a
≡ 2

(ĉ−Kcq)2

b− a
=

2
(
K bq+aq

2
−K

(
b+a
2

)q)2
b− a

.

Set again a = tb. Then ld(A,B) ≡ K2fq(t)b
2q−1, where

fq(t) =
2
(
1+tq

2
−
(
1+t
2

)q)2
1− t

.

Together with our earlier results from this section, and taking into account again
that if d(O,B) = r then r ≡ b, we get the following result. Denote by mq the
supremum of fq on the interval [0, 1) (it is finite, since the limit of fq(t) at t = 1 is 0).

Theorem 4.1. If the curve Γ in the plane is the graph of the function y = K|x|q for
some real q > 1 and K > 0, then its flexion at the origin O has order 2q − 1 and
Φ2q−1(Γ, O) = K2 max(1,mq).

Note that this agrees with Theorem 3.7, since m2 = 1/8 and the curvature of the
graph of the function y = Kx2 at the origin is 2K.

We get as a corollary to Theorem 4.1:

Corollary 4.2. For every real p > 1 and Ψ > 0 there is a C1 planar curve Γ and a
point P ∈ Γ such that the flexion of Γ at P has order p and Φp(Γ, P ) = Ψ.

To get more information about mq, let us look more closely at fq(t) as a function of
q > 1 and 0 ≤ t < 1. If we fix t and let q go to infinity, we get the limit 1/(2(1−t)). If
t > 1/2, this is larger than 1, and therefore, if q is large, then max(1,mq) = mq > 1.
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Let us show that for 0 ≤ t < 1, the function q 7→ fq(t) is increasing on (1,∞). This
is clear if t = 0, so consider t ∈ (0, 1). Set

g(t) = t log t− (1 + t) log
1 + t

2

for 0 < t ≤ 1. We have

g′(t) = log t− log
1 + t

2
< 0

and g(1) = 0. Therefore g(t) > 0 for t ∈ (0, 1). Thus,

log t

2 log 1+t
2

<
1 + t

2t
<

(
1 + t

2t

)q
,

so
∂

∂q

(
1 + tq

2
−
(

1 + t

2

)q)
=
tq

2
log t−

(
1 + t

2

)q
log

1 + t

2
> 0.

Moreover,
1 + tq

2
>

(
1 + t

2

)q
,

because the function t 7→ tq is strictly convex. This proves that the function q 7→ fq(t)
is increasing. In particular, the function q 7→ mq is increasing.

0 1
0

1

Figure 5. Graphs of functions fq.

Numerical investigation of the functions fq gives interesting results. In Figure 5
we see the graphs of the functions fq for q = 2, 3, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20 (from
the bottom up). We see that mq < 1 for q ≤ 12, but mq > 1 for q ≥ 13 (we have
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f13(0.65) ≈ 1.0071941657). Since we consider all real q > 1, there is some critical
q ∈ (12, 13) for which mq = 1.

5. V-curves

Now we consider the simplest family of nonsmooth curves, namely two rays joined
at their endpoints. Then for any point other than the singularity, any sufficiently
small ball around such a point is a segment and thus has gap zero. In contrast, at
the singularity, the gap is positive and proportional to the ball’s radius.

Theorem 5.1. For c > 0, let Vθ be the graph of y = c|x| in the plane, where θ is the
angle in the first quadrant between Vθ and the horizontal axis, so that c = tan θ (see
Figure 6). Then the flexion of Vθ at the origin O has order 1 and the 1-flexion there
is

2

(
1− 1√

1 + c2

)
= 2(1− cos θ) if 0 < c ≤ 1,

and

2

(
2c

1 + c2
− 1√

1 + c2

)
= 2(2 sin θ − 1) cos θ if c > 1

(see Figure 7).

1-1

c

θ

Figure 6. The curve Vθ.

We write V for Vθ, then V + for the part of V in the first quadrant (its right arm),
and V − for the part in the second quadrant (its left arm), so that V = V + ∪ V −.

Let P± be the points in B(O, r) at distance r from the origin, with P+ ∈ V + and
P− ∈ V −. Thus, P± = (±a, c|a|), where a = r cos θ.

We will prove that the gap of B(O, r) is witnessed at the endpoints P− and P+,
that is,

(8) γ(B(O, r)) = ld(P−, P+).

Note that a homothety scales leipodistances accordingly. Thus, in order to prove (8)
it suffices to prove it in the case that a = 1, i.e. r = sec θ, so P± = (±1, c). For the
same reason, at least one of any pair of points with maximal leipodistance in B(O, r)
is an endpoint. Thus, by symmetry we can take one of our two points to be P−.
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0
0

1

/4 /2π π

Figure 7. Flexion as a function of the angle θ.

Then clearly the second point giving maximal leipodistance cannot also be on V −.
Let Q = (x, cx), with 0 ≤ x ≤ 1, be a point in V +. We want to show that ld(P−, Q)
is maximized when Q = P+, i.e. when x = 1.

Consider first the case of c > 1. For a given point Q = (x, cx) on the right arm let
Q− = (−y, cy) be the point on the left arm such that the segment joining Q with Q−

is perpendicular to the left arm (see Figure 8). Then the vectors (x+ y, c(x− y)) and
(−1, c) are perpendicular, so −x− y + c2x− c2y = 0. Therefore,

(9) y =
c2 − 1

c2 + 1
x.

P_ P+

O

Q

Q
_

Figure 8. The case c > 1, x > x0.

There is a unique point Q0 = (x0, cx0) for which d(P−, Q
−
0 ) = d(Q0, Q

−
0 ), where

Q−0 = (−y0, cy0) is the point Q− as above corresponding to Q0. We have d(P−, Q
−
0 ) =

(1−y0)
√
c2 + 1 and d(Q0, Q

−
0 ) =

√
(x0 + y0)2 + c2(x0 − y0)2. By (9), we get d(Q0, Q

−
0 ) =
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2cx0/
√
c2 + 1, so

x0 =
c2 + 1

c2 + 2c− 1
.

If x ≥ x0 then hd(P−, Q) = 2d(Q,Q−); if x ≤ x0 then hd(P−, Q) = 2d(Q,S), where
S is the point on the left arm for which d(Q,S) = d(P−, S) (see Figure 9). Observe
that if c ∈ [0, 1] then for all x we have hd(P−, Q) = 2d(Q,S).

Lemma 5.2. Assume that c > 1 and x0 ≤ x < 1. Then ld(P−, Q) < ld(P−, P+).

Proof. We compute d(Q,Q−) in the same way as d(Q0, Q
−
0 ), so d(Q,Q−) = 2cx/

√
c2 + 1.

Thus,

ld(P−, Q) =
4cx√
c2 + 1

−
√

(x+ 1)2 + c2(1− x)2.

For Q = P+ we have x = 1, so

(10) ld(P−, P+) =
4c√
c2 + 1

− 2.

Therefore, we have to prove that

(11) 2− 4c(1− x)√
c2 + 1

<
√

(x+ 1)2 + c2(1− x)2.

We square both sides of (11), rearrange it and divide by (1 − x) (which, as we
know, is positive), and get an equivalent (under our assumptions) inequality

(12) 3 + x <
16c√
c2 + 1

+

(
c2 − 16c2

c2 + 1

)
(1− x).

At x = 0, (12) becomes 4 < 16c/
√
c2 + 1, which holds because c ≥ 1. At x = 0, (12)

is equivalent to (11) for x = 0, that is,

2− 4c√
c2 + 1

<
√
c2 + 1.

This inequality also holds because c ≥ 1 (in fact, its left-hand side is negative).
Since inequality (12) is affine in x and is satisfied for x = 0 and x = 1, it is satisfied

for all x ∈ [0, 1]. �

As we mentioned, if x ≤ x0 (and also for all x if c ≤ 1) we have hd(P−, Q) =
2d(Q,S). Let us express this quantity in geometric terms. Let α ∈ (0, π/2) be the
angle between the left arm and the segment L joining P− with Q, and let U be the
point on L for which the segment from S to U is perpendicular to L. Then

d(Q,S) = d(P−, S) = d(P−, U) secα =
d(P−, Q)

2
secα

(see Figure 9). Therefore,

(13) ld(P−, Q) = d(P−, Q)(secα− 1).

Lemma 5.3. If c > 1 and 0 < x < x0, then ld(P−, Q) < ld(P−, Q0). Similarly, if
0 < c ≤ 1 and 0 < x < 1, then ld(P−, Q) < ld(P−, P+).
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P_ P+

O

QS

U
α

β

Figure 9. The case c > 1, x < x0.

Proof. Let β be the angle between the arms of V . By the Law of Sines, d(P−, Q) =
sin βd(O,Q)/ sinα, so

ld(P−, Q) = sin β
secα− 1

sinα
d(O,Q).

Observe that (for a fixed β) d(O,Q) is a strictly increasing function of α. Moreover,
if α ∈ (0, π/2), then (secα− 1)/ sinα is positive. The product of two positive strictly
increasing functions is strictly increasing. Thus, in order to prove both parts of the
lemma, it is enough to show that the function g(α) := (secα − 1)/ sinα is strictly
increasing on (0, π/2).

We have

g′(α) =
tan2 α + cosα− 1

sin2 α
.

The function h(α) := tan2 α + cosα− 1 has value 0 at α = 0, and

h′(α) = sinα(2 sec3 α− 1) > 0

for all α ∈ (0, π/2). Thus, g′(α) > 0 for all α ∈ (0, π/2), so g is strictly increasing on
(0, π/2). �

From Lemmas 5.2 and 5.3 we get easily (8).

Proposition 5.4. We have γ(B(O, r)) = ld(P−, P+).

Proof. As we have observed, it has to be proved only for the case of r = sec θ.
If c > 1 and x0 ≤ x < 1, it follows from Lemma 5.2. If 0 < c ≤ 1 and 0 <
x < 1, it follows from Lemma 5.3. If c > 1 and 0 < x < x0 then by Lemma 5.3
ld(P−, Q) < ld(P−, Q0). However, ld(P−, Q0) < ld(P−, P+) by Lemma 5.2, and the
desired inequality follows. �

Now we can prove Theorem 5.1.
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Proof of Theorem 5.1. First suppose 0 < c ≤ 1. We have Q = P+, so S = O. There-
fore, hd(P−, P+) = 2r, and we get

γ(B(0, r)) = ld(P−, P+) = hd(P−, P+)− d(P−, P+) = 2r − 2a

= 2

(
1− 1√

1 + c2

)
r = 2(1− cos θ)r.

Now suppose c ≥ 1. Then we can use (10), remembering that it was obtained under
the assumption that r =

√
1 + c2. Thus, in the general case we have

ld(P−, P+) =
r√

1 + c2

(
4c√

1 + c2
− 2

)
= 2

(
2c

1 + c2
− 1√

1 + c2

)
r.

Therefore,

γ(B(0, r)) = 2

(
2c

1 + c2
− 1√

1 + c2

)
r = 2

(
(2 sin θ − 1) cos θ

)
r.

�

Elementary computations give us an unexpected result.

Corollary 5.5. The 1-flexion of Vθ at the origin is maximized when

θ = sin−1

(
1 +
√

33

8

)
≈ 1.00296695386625,

i.e. when c is the largest zero of the polynomial 3c4 − 9c2 + 4:

c =

√
9 +
√

33

6
≈ 1.5676182914716.

Thus, as θ varies, the 1-flexion of Vθ at the origin takes all values between 0 and√
414− 66

√
33

8
≈ 0.738017456956381,

but no larger values (see Figure 7).

6. Fractals

Let us now look at curves that are very non-smooth, namely fractal ones [Fa]. If we
understand “fractal” as “self-similar”, when we take smaller and smaller scales, we see
the same picture scaled down. This means that we should expect that the tryposity
(flexion) of our curve at every point will have order 1. In fact, this should be true for
all self-similar sets, not only for curves. However, an exact statement of such result
and a proof may depend heavily on what we really understand as “self-similarity”.
Therefore, here we will work with a concrete curve, namely with the quite popular
Koch curve. Let us define it.

We construct it in steps. We start with the interval [0, 1], then we remove its middle
1/3 and replace it by the two other sides of the equilateral triangle whose one side
was the remove interval. Next we repeat the same operation with every segment of
our curve, and we continue by induction (see Figure 10). In the limit we get a curve
which we call the Koch curve and denote by K.
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Figure 10. Construction of the Koch curve.

We have to estimate the gap of balls in the Koch curve from both sides. One
estimate, namely

(14) γ(B(x, r)) ≤ r,

follows immediately from Lemma 2.3.
The other estimate is more complicated.

Lemma 6.1. If 0 < r < 1 and x ∈ K then γ(B(x, r)) >
√
3−1
9
r.

Proof. Let Kn be the curve that we get in the nth step of the construction of K (so
in Figure 10 we see Kn for n = 0, 1, 2, 3). It is clear that the diameter of K is 1.
Therefore, the diameter of any part of K between two consecutive vertices of Kn is
3−n. It follows that if x ∈ K and r ≥ 3−n then B(x, r) contains at least one part
of the curve K between two consecutive vertices of Kn. Call this part X. It looks
like all of K, scaled down by the factor 3n. Let y, z ∈ K be the two vertices of Kn+1,
adjacent to the endpoints of X (see Figure 11). Their distance is 3−(n+1), while their
hyperdistance is larger than 2 times the altitude of the equilateral triangle whose one
side is the segment joining y with z. Thus, ld(y, z) > (

√
3− 1)3−(n+1).

In such a way we see that if 3−n ≤ r < 3−(n−1) then

γ(B(x, r)) > (
√

3− 1)3−(n+1) ≥
√

3− 1

9
r.

�

From the inequality (14) and Lemma 6.1 we get immediately the following theorem.

Theorem 6.2. The flexion of the Koch curve K at any point has order 1, and at

each point the lower 1-flexion is at least
√
3−1
9

, while the upper 1-flexion is at most 1.
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y z

Figure 11. Points y, z, where the visible curve is an approximation to X.

As we said, the idea that the tryposity order should be 1 for fractals should apply
not only to curves, but also to other spaces. Let us investigate what happens to
various Cantor sets (subsets of the real line homeomorphic to the standard middle
third Cantor set).

Let X be our space. As always, when we write B(x, r), we mean a closed ball in X.
By the definition, in order to check whether the order of the tryposity at all points is
1, we only have to check whether

(15) lim inf
r→0

γ(B(x, r))

r
> 0

for every x ∈ X. If this property is satisfied (that is, if the tryposity order is 1 at all
points), we will say that X is a trypofractal.

Sometimes we can expect an even stronger property:

(16) lim
r→0

inf
x∈X

γ(B(x, r))

r
> 0.

Then we will say that X is a uniform trypofractal.

Proposition 6.3. Let X be the standard middle third Cantor set. Then, for every
x ∈ X and r ∈ (0, 1] we have γ(B(x, r)) ≥ r/9, so X is a uniform trypofractal.

Proof. When 3−n ≤ r ≤ 31−n for some n ≥ 1 and x ∈ X, then B(x, r) is the
intersection of X with a closed interval, and this interval contains an interval of
nth generation (of length 3−n) from the construction of X. In this interval there
is a gap3 of (n + 1)st generation. This gap has length 3−n−1, so by Lemma 2.9,
γ(B(x, r)) ≥ 3−n−1 = 31−n/9 ≥ r/9. �

Example 6.4. Let us modify slightly Example 2.10, by replacing each point an by
a standard Cantor set containing an, scaled down linearly is such a way that its
diameter is smaller than a2n. Then the limits (4) will not change and we see that
again the tryposity at 0 does not exist. Thus, it is not a trypofractal. However, our
set has no isolated points and has a countable base consisting of clopen sets, so by
Brouwer’s Theorem [Br] it is a Cantor set. ♦

We will say that X is a fractal if for every nonempty open subset U ⊂ X the
Hausdorff dimension of U is larger than its topological dimension. However, readers
are welcome to use their favorite definition of a fractal.

3Here we are talking about the gaps in the Cantor set, not about the gap of any space.
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Proposition 6.3 gives us an example of a set that is both fractal and trypofractal.
Example 6.4 is an example of a fractal that is not a trypofractal. A remaining question
is whether every trypofractal is a fractal. This question can be asked for arbitrary
compact metric spaces, or only for Cantor sets.

7. Non-Euclidean curves

Let us now consider some curves that cannot be embedded into Euclidean spaces.
Take an interval and define a metric on it that makes it homeomorphic to the same
interval with the usual metric. We will make this interval locally homogeneous. That
is, any two points have small neighborhoods which are isometric to each other. This
means that the flexion will be the same at each point. This is in contrast to the
results of Sections 4 and 5, where we obtained special flexion at one point.

Our metric will be of the form d(x, y) = f(|x− y|), and the space will be (0, ε).

Lemma 7.1. Assume that f : (0, ε) → (0,∞) is a strictly increasing function of
class C1, such that limx→0 f(x) = 0 and f ′ is decreasing. Then the function d(x, y) =
f(|x− y|) if x 6= y and d(x, x) = 0 is a metric on (0, ε) and (0, ε) with this metric is
homeomorphic to an interval.

Proof. The only property of the metric that is not obvious is the triangle inequality.
Suppose 0 < x < y < z < ε. Then d(x, z) > d(x, y) and d(x, z) > d(y, z), so we only
have to check that d(x, z) ≤ d(x, y) + d(y, z). Let y − x = a and z − y = b. Then
we have to prove that Ψ(a) ≥ 0, where Ψ(a) = f(a) + f(b) − f(a + b), under the
assumptions that a, b > 0 and a + b < ε. We have Ψ′(a) = f ′(a) − f ′(a + b) ≥ 0,
because f ′ is decreasing. Moreover, lima→0 Ψ(a) = f(b)− f(b) = 0. Thus, Ψ(a) ≥ 0.

The property that our space is homeomorphic to an interval follows immediately
from the fact that f is strictly increasing and limx→0 f(x) = 0. �

First we will construct a metric in which the flexion has order 1 and 1-flexion takes
any prescribed value from (0, 1).

Example 7.2. Fix q ∈ (0, 1) and set ε = 1 and f(x) = xq. Then the assumptions of
Lemma 7.1 are satisfied.

If 0 < x < y < z < 1 and d(x, y) = d(y, z) = r, we get y − x = z − y = r1/q,
so z − x = 2r1/q. Hence, d(x, z) = 2qr, and it is easy to see that hd(x, z) = 2r.
Therefore, ld(x, z) = (2 − 2q)r, so it is clear that the flexion at y has order 1 and
1-flexion is 2 − 2q. In particular, our interval is a trypofractal (in fact, it is even a
uniform trypofractal). This is not surprising, because its nonempty open sets have
Hausdorff dimension 1/q and topological dimension 1, so it is a fractal. ♦

Next we construct a metric in which the flexion has order 1 and 1-flexion is 1.

Example 7.3. Set ε = e−2 and f(x) = − 1
log x

. We have f ′(x) = 1
x(log x)2

> 0.

Moreover,

f ′′(x) = − 2 + log x

x2(log x)3

is negative if 0 < x < e−2. Therefore, the assumptions of Lemma 7.1 are satisfied.
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If 0 < x < y < z < 1 and d(x, y) = d(y, z) = r, we get y − x = z − y = e−1/r, so
z − x = 2e−1/r. Hence,

d(x, z) =
−1

log(2e−1/r)
=

−1

log 2− 1
r

,

and it is easy to see that hd(x, z) = 2r. Therefore,

ld(x, z) = 2r − −1

log 2− 1
r

=

(
2 +

1

r log 2− 1

)
r,

and since

lim
r→0

(
2 +

1

r log 2− 1

)
= 1,

it is clear that the flexion at y has order 1 and 1-flexion is 1.
Observe that here nonempty open subsets of our space have infinite Hausdorff

dimension. ♦

Finally, we get flexions of any prescribed order p > 1 and p-flexion of any prescribed
positive value.

Example 7.4. Fix p > 1 and K > 0. Set ε = (Kp)
−1
p−1 and f(x) = x − Kxp. We

have f ′(x) = 1−Kpxp−1 > 0 for x ∈ (0, ε). Therefore, the assumptions of Lemma 7.1
are satisfied.

If 0 < x < y < z < ε and y − x = z − y = a, then d(x, z) = 2a−K(2a)p and it is
easy to see that hd(x, z) = 2(a−Kap). Thus, ld(x, z) = K(2p − 2)ap, and since the
limit of (a−Kap)/a is 1 as a goes to 0, we get flexion at y of order p, and p-flexion
equal to K(2p − 2). ♦

8. Questions

Let us look at our results and try to ask some natural questions.
In Section 3 we assume that the curve is of class C3. The third derivative is used

in the proof of Theorem 3.2. But maybe this theorem is also true if we assume only
that the curve is of class C2? Or maybe, even if it is not true, the main results are
true under this weaker assumption?

In Section 4, for all orders p > 1 we get all positive p-flexions for one point of a C1

planar curve. However, we got this by considering the concrete examples y = K|x|q.
Can one get this for a much more general class of examples?

In Section 5 it is notable that the construction does not yield 1-flexions close to 1.
Can we get them arbitrarily close to 1 for planar curves (with order 1)? Or at least

closer to 1 than this strange number

√
414−66

√
33

8
? And can we get 1-flexion 1? It is

far from clear how to try to construct such curves.
In Section 6 we get estimates for the upper and lower 1-flexion for the Koch curve.

But are there points where the upper and lower 1-flexion are equal? Or maybe this
happens for every point? And how do those 1-flexions depend on the point? In fact,
similar questions can be asked even for the standard Cantor set, but there they should
be relatively simple.
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