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1. Multiplicative Weights Update

Multiplicative Weights Update (MWU) is an algorithm discovered and used in
economics, computer science and AI, with close connection to models of theoretical
biology [2, 3]. Multiplicity of fields of applications is a consequence both of its sim-
plicity and of its intuitive property — it is a no regret algorithm. No regret algorithms
play fundamental role in applications, as they can be used when agents lack informa-
tion, because they guarantee that the sequence of chosen actions is asymptotically as
good as the best fixed action in hindsight.

Let Γ be a set of strategies. At time t = 1, 2 . . . , T a player chooses a mixed strategy
xt, that is a probability distribution over the action set Γ, and then receives a cost
ct. The (time-averaged) regret of the action sequence γ1, γ2, . . . , γT ∈ Γ with respect
to the fixed strategy γ ∈ Γ is

1

T

[
T∑
t=1

ct(γt)−
T∑
t=1

ct(γ)

]
. (1)

An algorithm is no regret when for all γ ∈ Γ the expression in (1) with T → ∞
converges to zero. MWU is a canonical example of no regret algorithm. In addition,
it gives optimal bounds for regret [6].

Multiplicative Weights Update maintains weights of the strategies. At each step
the algorithm chooses a strategy with probability proportional to its current weight.
Initially we set equal weights w1(γ) = 1 for every γ ∈ Γ. Then at step t = 1, 2, . . . , T
the action γ̂ is chosen by a player with probability

xt(γ̂) =
wt(γ̂)∑
γ∈Γw

t(γ)
. (2)

The weight of a strategy γ ∈ Γ is updated as follows

wt+1(γ) = w1(γ)(1− ε)Ct(γ),

where Ct(γ) =
∑t

τ=1 c
τ (γ) is the cumulative cost of the play of strategy γ up to step

t and ε ∈ (0, 1) is a common learning rate of the agents. We express the update rule
of the weight of the action γ in terms of the previous-step weight

wt+1(γ) = w1(γ)(1− ε)Ct−1(γ)(1− ε)ct(γ)

= wt(γ)(1− ε)ct(γ).
1
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The weight wt(γ) decreases with time and the rate of its decrease depends of the
cumulative cost of the previous play of strategy γ.

By using (2) and (1) we can express the probabilities xt+1 in terms of of the
previous-step probabilities

xt+1(γ̂) =
wt(γ̂)(1− ε)ct(γ̂)∑
γ∈Γw

t(γ)(1− ε)ct(γ)

=

wt(γ̂)∑
γ∈Γ w

t(γ)
(1− ε)ct(γ̂)∑

γ∈Γ
wt(γ)∑
γ∈Γ w

t(γ)
(1− ε)ct(γ)

=
xt(γ̂)(1− ε)ct(γ̂)∑
γ∈Γ x

t(γ)(1− ε)ct(γ)
.

Thus,

xt+1(γ̂) =
xt(γ̂)(1− ε)ct(γ̂)∑
γ∈Γ x

t(γ)(1− ε)ct(γ)

2. Background in Dynamical Systems

2.1. Invariant measures and the ergodic theorem. We can also discuss a dis-
crete dynamical system in terms of a measure preserving transformation defined on
a probability space. This approach can handle not only purely mathematical con-
cepts but also physical phenomena in nature. This subsection is devoted to invariant
measures, absolutely continuous measures and the most fundamental idea in ergodic
theory — the Birkhoff Ergodic Theorem, which states that with probability one the
average of a function along an orbit of an ergodic transformation is equal to the
integral of the given function.

Let (X,B, µ) be a probability space and f : X 7→ X be a measurable map. The
measure µ is f -invariant (a map f is µ-invariant) if µ(f−1E) = µ(E) for every E ∈ B.
For an f -invariant measure µ we say that µ is ergodic (f is ergodic) if for all E ∈ B
if f−1E = E then µ(E) = 0 or 1. If X is an interval, a measure µ is absolutely
continuous with respect to Lebesgue measure if and only if for every set E ∈ B of
zero Lebesgue measure µ(E) = 0.

We can now state the ergodic theorem.

Theorem (Birkhoff Ergodic Theorem). Let (X,B, µ) be a probability space. If f is
µ-invariant and g is integrable, then

lim
n→∞

1

n

n−1∑
k=0

g(fk(x)) = g∗(x)

for some g∗ ∈ L1(X,µ) with g∗(f(x)) = g∗(x) for almost every x. Furthermore if f
is ergodic, then g∗ is constant almost everywhere and

lim
n→∞

1

n

n−1∑
k=0

g(fk(x)) =

∫
X

g dµ

for almost every x.
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Lastly, why do absolutely continuous invariant measures matter? Computer-based
investigations are widely used to gain insights into the dynamics of chaotic phenom-
ena. However, one must exercise caution in the interpretation of computer simula-
tions. Usually, chaotic systems possess multiple ergodic probability invariant mea-
sures, but if the absolutely continuous measure with respect to Lebesgue measure
exists, the averages of a given observable (function) along the orbits obtained from
the computer simulations will be equal to the integral of this observable with respect
to our measure [1]. Thus, the theoretical measure and the computational measure
coincide in this situation.

3. Proofs

3.1. Proof of Lemma 3.1.

Proof of Lemma 3.1. We have

F (ξs)(ω) =
ξs(ω)

ξs(ω) + (1− ξs(ω)) exp
(
a(ω)

(∫
ξs dµ− b

)) .
By applying the formula for ξs we get

F (ξs)(ω) =

=
ξs(ω)

ξs(ω) + (1− ξs(ω)) exp
(
a(ω)

(∫
ξs dµ− b

))
=

ξ(ω)

ξ(ω) + (1− ξ(ω)) exp(sa(ω)) exp
(
a(ω)

(∫
ξs dµ− b

))
=

ξ(ω)

ξ(ω) + (1− ξ(ω)) exp
((
s+

∫
ξs dµ− b

)
a(ω)

)
= ξG(s)(ω),

where

G(s) = s+

∫
ξs dµ− b.

�

This means that ξ can be embedded in a one-parameter family, invariant for F , on
which F is topologically conjugate to G.

3.2. Proof of Theorem 3.2.

Proof of Theorem 3.2. Observe that if s ≥ ε, then ξan,s ≤ ξan,ε. The functions ξan,ε
are commonly bounded by 1 on a space of finite measure and converge pointwise to 0
as n→∞. Therefore, if we fix a and let s go to∞ (respectively −∞), then

∫
ξa,s dµ

goes to 0 (respectively 1). Therefore, if s is sufficiently big, then Ga(s) < s, and if s is
sufficiently small then Ga(s) > s. Hence, Ga has a fixed point. Since ξa,s is a strictly
decreasing function of s, so is Ga(s)− s, and therefore the fixed point is unique. �
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3.3. Proof of Theorem 3.5. Let us now check what happens if the function a is
small.

Lemma 1. If supω∈Ω a(ω) ≤ A then 1− A
4
≤ G′a(s) < 1 for all s ∈ R.

Proof. We have

G′a(s) = 1 +
d

ds

∫
ξa,s(ω) dµ(ω).

By differentiating the integrand, we get

d

ds
ξa,s(ω) = −a(ω)

ξ(ω)(1− ξ(ω)) exp(sa(ω))(
ξ(ω) + (1− ξ(ω)) exp(sa(ω))

)2 .

Since ξ(ω) ∈ (0, 1) for all ω ∈ Ω, this derivative is negative. On the other hand, if
t, u ∈ R, then (t+ u)2 − 4tu = (t− u)2 ≥ 0, so tu

(t+u)2 ≤ 1
4
. Applying this to t = ξ(ω)

and u = (1− ξ(ω)) exp(sa(ω)), we get

−a(ω)
d

ds
ξa,s(ω) ≥ −a(ω)

4
≥ −A

4
.

Therefore, ∣∣∣∣ ddsξa,s(ω)

∣∣∣∣ ≤ A

4
,

and since constant functions are integrable for µ, we can apply the Leibniz integral rule
for differentiation under the integral sign. In such way we get 1− A

4
≤ G′a(s) < 1. �

Proof of Theorem 3.5. If supω∈Ω a(ω) < 8, then by Lemma 1 we have −1 < G′a(s) < 1
for all s. Therefore, this fixed point is globally attracting. �

3.4. Proof of Theorem 3.7. Define functions G− and G+ by G−(s) = s+ 1− b and
G+(s) = s− b.

Lemma 2. If the sequence (an)∞n=1 of measurable functions from Ω to (0,∞) converges
pointwise to infinity, then for every ε > 0 functions Gan converge uniformly to G−
on (−∞,−ε] and to G+ on [ε,∞). Moreover, for every n we have G+ < Gan < G−.

Proof. Observe that if s ≥ ε, then ξan,s ≤ ξan,ε. The functions ξan,ε are commonly
bounded by 1 on a space of finite measure and converge pointwise to 0 as n → ∞.
Therefore, their integrals converge to 0, so the functions Gan converge to G+ uniformly
with respect to s ∈ [ε,∞). Similarly, they converge to G− uniformly with respect to
s ∈ (−∞,−ε]. The last inequality is obvious. �

Proposition 3. If b 6= 1/2 and the sequence (an)∞n=1 of measurable functions from
Ω to (0,∞) converges pointwise to infinity, then there exists N such that for every
n ≥ N the map Gan has a periodic orbit of period 3.

Proof. Assume first that b > 1/2. Fix a positive number ε < min
(

1−b
3
, 2b−1

3

)
. By

Lemma 2 there exists N such that for every n ≥ N , if s ≤ −ε then

s+ 1− b− ε < Gan(s) < s+ 1− b,
and if s ≥ ε then

s− b < Gan(s) < s− b+ ε.
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We have Gan(−ε) > 1 − b − 2ε > ε and Gan(ε) < −b + 2ε < −ε. Therefore,
there exists s0 ∈ (−ε, ε) such that Gan(s0) = ε. We have G2

an(ε) < Gan(−b + 2ε) <
1 − 2b + 2ε < −ε. Thus, s0 < ε = Gan(s0) and G3

an(s0) < −ε < s0. By [4], this
implies the existence of a periodic point of period 3 for Gan .

The case b < 1/2 can be reduced to the case b > 1/2 by replacing b by 1 − b and
conjugating Gan , G−, G+ via s 7→ 1− s (this switches G− and G+). �

Proof of Theorem 3.7. By the Sharkovsky Theorem [7], existence of a periodic orbit
of period 3 implies existence of periodic orbits of all periods, and by the result of [5],
it implies that the map is Li-Yorke chaotic. Thus, use of Proposition 3 completes the
proof of Theorem 3.7. �

3.5. Proof of Theorem 3.9. Now we look at the averages. For a given ζ ∈M(Ω, I),
we can consider its space average,

∫
ζ dµ. It can be interpreted as the expected value

of ζ. We will prove that the sequence of averages of the expected values of F n(ζ)
(which is the same as the sequence of expected values of averages of F n(ζ)) converges
to b.

Proof of Theorem 3.9. We started our construction by fixing a function ξ. It was
arbitrary, so we can take ξ = ζ. If sn = Gn

a(0), then

sn+1 = sn +

∫
ξa,sn dµ− b = sn +

∫
ζn dµ− b.

In such a way we get

n−1∑
k=0

∫
ζk dµ− nb = sn.

From Lemma 2 it follows that G−(s)−G(s)→ 0 when s→ −∞ and G(s)−G+(s)→ 0
as s→∞. Thus, for s close to −∞ we have G(s) > s and for s close to ∞ we have
G(s) < s. Therefore, the trajectory of 0 under the iterates of Ga is bounded, so the
left-hand side above is bounded uniformly in n. �
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