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Abstract. Traditional evolutionary game theory is a powerful tool for analyzing
the statistics of a large population participating in a game. However, the behavior of
the individual agents are based on simple memoryless dynamics and this collective
behavior is typically represented by a single distribution encoding the frequency of
the different actions played deterministically by all the infinitesimal agents. In this
paper, we study a more general model that captures a large population of agents of
different types, each of them performing reinforcement learning, leveraging memory
of past actions’ performance and outputting unpredictable behavior. The state of
the system is captured not by a single discrete distribution but involves more com-
plex measures capturing all possible heterogeneous learning states of the population
of agents. We apply this advanced learning model in congestion games, which are
well known to admit an essentially unique equilibrium solution. We showcase that
our learning dynamics can exhibit convergence to numerous asymmetric equilib-
rium states as well as phase transitions to chaos. Remarkably, even in the chaotic
regime, precise predictions can be made about the system performance as the time-
average cost of all actions are shown to be equal to each other and in fact agree with
their values at equilibrium. Therefore, a plethora of novel heterogeneous normative
solutions are shown to be dynamically emergent in population games.

1. Introduction

Learning in games with a large population of agents has been a staple of evolu-
tionary game theory [32, 16, 38]. In such models a large population of agents are
presumed to choose one action/type from a fixed number of options. Each individ-
ual agent is assumed to update their action according to simple, memoryless models
(e.g., each agent samples another one in the population uniformly at random and if
the action played by the sampled agent outperforms their current action then the
new action is chosen with some probability depending on the payoff improvement).
At the population level, the behavioral model then examines the deterministic limit
of this process given an infinitely large population and tracks how the frequencies
of the different actions in the population vary with time using a single probability
distribution.

Multi-agent reinforcement learning on the other hand is traditionally studied in
games with only a handful of agents, see [5, 15, 39]. Each agent applies sophisticated
learning by keeping explicit memory of how different actions have fared during past
plays. Using this historical information each agent updates their beliefs about which
action is best for them to play next and sample their future actions according to these
beliefs. Unfortunately, even in games with only two agents reinforcement learning
dynamics, such as the replicator dynamics [36, 34], can lead to chaotic behavior
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(in the sense of positive Lyapunov exponents of the system) even in rather simple
two-agent games, such as slight generalizations of the standard Rock-Paper-Scissors
game [33]. These results have direct analogues in evolutionary game theory where
chaos can emerge even with only four strategies/types [35]. Furthermore, such chaotic
results are common in two-players games [13, 26, 8, 24, 10, 1] as well as multi-player
games [31].

Moving towards combining reinforcement learning and population games, [9, 4]
proved phase transitions from global stability to Li-Yorke chaos in population games,
known as non-atomic congestion games [25]. The learning dynamics corresponds to
discrete-time variants of replicator dynamics, which allows for the population as a
whole to learn/adapt either at a slow or fast pace. When the learning rate is small,
the behavior is qualitatively similar to continuous-time models which are known to
converge to an essentially unique Nash equilbrium/flow due to a potential/Lyapunov
function argument [18, 19]. In contrast, when the learning rate increases, chaos
emerges, unlike in the continuous-time variant. Critically, however, these models
only allow for homogeneous behaviors amongst a continuum of agents. In the orthog-
onal direction, [20] studied reinforcement learning in a population game, where the
population statethe probability distribution over the set of mixed strategiesevolves
according to a partial differential equation variant of replicator dynamics. Although
this model allows for heterogeneity of strategies to persist even at equilibrium, no
instability results are reported. Instead, in specific classes of potential games, the
population mean (i.e. the expected mixed strategy over the whole population) con-
verges to the set of Nash equilibria.

In this work, we combine essential features of these two models by explicitly al-
lowing for a (possibly infinitely) large population of agents each of which adapts
its behavior according to standard class of online/reinforcement learning dynamics
known as Multiplicative Weights Updates (MWU).1 Moreover, our model to the best
of our knowledge is the first to combine two distinct sources of heterogeneity amongst
the agents. First, each agent may start with different beliefs about which is the
most promising action to play initially. Thus, the (evolving) state of the system
will be intrinsically complex as it encodes a function from (possibly a continuum
of) agents/types to a continuum of probability distributions/beliefs. Second, in our
discrete-time dynamics each agent has their own intensity of learning (learning rates),
i.e., some agents may adapt quickly to payoff signals by learning fast whereas others
may be much more patient in how they update their beliefs. Given this complex
learning model we are interested in understanding under what conditions and to

1MWU is a ubiquitous online learning meta-algorithm that, along with several close variants
thereof, has been rediscovered several times under different names. First introduced by Hannan [14],
then rediscovered from 1990’s with Aggregating Algorithm (AA) by Vovk [37], Smooth Fictitious
Play by Fudenberg and Levine [12], Weighted Majority Algorithm by Littlestone and Warmuth [22],
Hedge by Auer et al. [3], Multiplicative Weights by Freund and Schapire [11], Exponentially Weighted
Average Forecaster by Cesa-Bianchi and Lugosi [6] the Exponentiated Gradient algorithm (EG) by
Kivinen and Warmuth [17] and the Discrete Replicator Equation by Losert and Akin [23], which
itself is closely connected to many other models of natural/evolutionary selection (see [23, 7] for
more discussion). It is arguably one of the most well studied dynamics in game theory [6, 29]. For
the more detailed history of MWU, see [7, 2].
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what extent does the resulting learning behavior agree with game theoretic solution
concepts such as Nash equilibria.

We employ this behavioral model in a standard game theoretic setting of conges-
tion (potential) games and show phase transitions where the system can diverge from
global stability to instability and chaos. Interestingly, even when the system is con-
vergent the system has a continuum of equilibria. Nevertheless, in this case we show
that learning converges pointwise to a single equilibrium with the initial condition-
dependent equilibrium selection process. Finally, when cost functions of different
strategies differ, aggressive behavior of agents will inevitably lead to chaotic, complex
behavior of the system with periodic orbits of every period as well as sensitivity to
initial conditions (buttefly effects). Despite the chaotic evolution of the day-to-day
behavior of the system, the time-average costs of the strategies of the agents as well
as time-average total flow converge to their equilibrium values defined in the standard
game theoretic setting. Thus, macroscopic order and regularity predicted by static
game theory can emerge from persistent chaotic learning dynamics in the microscopic
level.

2. Model

First, let us introduce the framework of game theory. A game has several/infinitely
many players (agents), and each player has a set of possible strategies (actions). Each
agent has a utility/cost, capturing the way in which his strategies and the strategies
of other agents affect this agent’s well-being. In this note, we consider a nonatomic
congestion game with continuum agents and with only two possible (pure) strategies.
Congestion games is a class of games introduced by Rosenthal [28]. In a congestion
game, agents are choosing strategies (resources/paths), and the cost of the strategy
depends on the total amount of agents choosing the same strategy. One of the most
well studied applications of this class of games is in the modeling of traffic jams.
In a nonatomic game, each agent controls an infinitesimally small fraction of the
flow [25, 19]. Thus, there doesn’t exist an (individual) agent whose change of behavior
will affect the outcome of the game. Finally, a game-theoretic solution of a game is
Nash equilibrium, a strategy profile in which all agents use their best response actions,
thus none of them has an incentive to change their behavior. In the case of non-atomic
congestion games such outcomes are also referred to as equilibrium flows or Wardrop
equilibria.

Agents in our game update their beliefs according to Multiplicative Weights Update
rule. How do the agents choose and adjust their choice of strategies over repeated
play? Each (type of) agent may be seen as selecting its new distribution over strategies
at each day/round so as to minimize a certain convex combination of cumulative costs
and the Shannon entropy of its distribution over actions.

We will start by considering a simplified model with a finite number m of different
types. With each type one can assign beliefs and learning rates. Out of the total
flow/demand N , the group of agents of type i has size Nci.

We will denote the fraction of the number of the players of type i using the first
strategy by xi. The second strategy is chosen by 1− xi fraction of the number of the
players of type i.
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We will assume that the cost is proportional to the load. If we denote by C(j) the
total cost of players playing the strategy number j, and the coefficients of propor-
tionality are α, β, then we get

C(1) = αN

m∑

i=1

cixi, C(2) = βN

m∑

i=1

ci(1− xi). (1)

For the Multiplicative Weights Update, there are parameters εi ∈ (0, 1), which can
be treated as the common learning rates of all players of type i. Then the updated
ratio will be (see SI text)

xi(1− εi)C(1)

xi(1− εi)C(1) + (1− xi)(1− εi)C(2)
. (2)

By combining formulas (1) and (2), we get

xi
xi + (1− xi)(1− εi)N(β

∑
cj−(α+β)

∑
cjxj)

. (3)

Then, taking ai = N(α+β) log 1
1−εi and b = β

α+β
, and observing that

∑
cj = 1, we

can rewrite formula (3) as2

xi
xi + (1− xi) exp(ai(

∑m
j=1 cjxj − b))

. (4)

As εi increases if and only if ai increases, we will refer to ai as the learning rate3,
while b will describe the asymmetry of costs of the two strategies. By (4) the dynamics
of types is described by the map

F (x1, . . . ,xm) =
( x1

x1 + (1− x1) exp(a1(
∑m

j=1 cjxj − b))
,

. . . ,
xm

xm + (1− xm) exp(am(
∑m

j=1 cjxj − b))

)
.

(5)

In this paper we are going to study long-term dynamics for any number of types
and its dependence on how aggressively agents behave. In fact, we even do not have
to assume that the number of types is finite. Namely, we can reinterpret our model
in the following way.

We consider a space Ω with the probability measure µ, describing types of agents.
Assignment of frequency of using the first strategy by a given type of agents (to
which belief is assigned) will be done by a measurable function ζ : Ω 7→ (0, 1), while
the learning rate for each agent will be given by a : Ω 7→ (0,∞). Thus, in the

2to simplify exposition and algebra, but there is no reason that it is essential for the results. In
fact Scaling N is mathematically equivalent to scaling ai’s. Although we will not pursue this case,
one can look at results for aggressive agents as the result on the consequences of increasing the
demand of the system. For a more thorough discussion of consequences of taking this perspective
see [9].

3There is another interpretation of ai which can be found in the literature — intensity of choice.
The larger ai is the more important for agent to optimize his behavior based on the information
received until now.



HETEROGENEITY, REINFORCEMENT LEARNING AND CHAOS IN POPULATION GAMES 5

case considered above we have Ω = {1, 2 . . . ,m}, µ({i}) = ci, a(i) = aiω ∈ Ω the
formula (5) becomes

F (ζ)(ω) =
ζ(ω)

ζ(ω) + (1− ζ(ω)) exp
(
a(ω)

(∫
ζ dµ− b

)) . (6)

Thus, the general model will consist of a space Ω with a probability measure µ,
measurable functions ζ : Ω 7→ (0, 1), a : Ω 7→ (0,∞), and a constant b ∈ (0, 1). Let
I = (0, 1). Let M(Ω, I) be the space of measurable functions from Ω to I. Then we
consider the operator F : M(Ω, I) 7→M(Ω, I) defined by (6) and study its dynamics.4

Before the analysis is performed, we first provide the necessary ingredients to rig-
orously understand the chaotic behaviors in our system.

Definition 1 (Li-Yorke chaos). Let (X, f) be a dynamical system and x, y ∈ X. We
say that (x, y) is a Li-Yorke pair if

lim inf
n→∞

dist(fn(x), fn(y)) = 0,

and
lim sup
n→∞

dist(fn(x), fn(y)) > 0.

A dynamical system (X, f) is Li-Yorke chaotic if there is an uncountable set S ⊂ X
(called scrambled set) such that every pair (x, y) with x, y ∈ S and x 6= y is a Li-Yorke
pair.

The origin of the definition of Li-Yorke chaos is in the seminal Li and Yorke’s
article [21]. Intuitively, the orbits of two points from the scrambled set approach
each other arbitrarily close and then go far from each other infinitely many times
but (if X is compact) it cannot happen simultaneously for each pair of points. Why
should a system with this property be chaotic? Obviously the existence of a large
scrambled set implies that orbits of points behave in unpredictable, complex way.
More arguments come from the theory of interval transformations, in the context in
which it was introduced. For such maps the existence of one Li-Yorke pair implies
the existence of an uncountable scrambled set and it is not very far from implying
all other properties that have been called chaotic in this context, see e.g. [30]. In
general, Li-Yorke chaos has been proved to be a necessary condition for many other
“chaotic” properties to hold.

3. Analysis

The map F (ζ) describes how choices of agents change. As fixing ζ assigns to the
type of agents a ratio of agents of this type choosing the first strategy (path/resource),
F (ζ)(ω) describes probability of choosing the first strategy in the next stage. Operator
F is continuous on M(Ω, I) in the topology of pointwise convergence, since I is
bounded, µ is finite, and the integral of ζ is a continuous function of ζ.

Topological conjugacy. The space of measurable functions is a complicated
multidimensional object. But instead of studying the dynamics of F from (6) one
can analyze the dynamics introduced by a map of the real line. To this aim we use

4While the formalism with the space (Ω, µ) and functions ζ is simple to work from the mathe-
matical point of view, one can also think in different terms. Namely, instead of the function ζ, one
can consider the measure ζ∗(µ) on I (given by ζ∗(µ)(X) = µ(ζ−1(X)).



6 J. BIELAWSKI, T. CHOTIBUT, F. FALNIOWSKI, M. MISIUREWICZ, AND G. PILIOURAS

topological conjugacy. Fix ξ ∈M(Ω, I)5 and define a one-parameter family (ξs)s∈R of
elements of M(Ω, I) by

ξs(ω) =
ξ(ω)

ξ(ω) + (1− ξ(ω)) exp(sa(ω))
.

It is easy to check that ξ0 = ξ. Moreover, the function s 7→ ξs is continuous and
strictly decreasing. Therefore, it is a homeomorphism from R onto (ξs)s∈R.

Lemma 3.1. Any fixed ξ ∈ M(Ω, I) can be embedded in a one-parameter family,
invariant for F , on which F is topologically conjugate to the map of the real line.
That is, we have

F (ξs)(ω) = ξG(s)(ω)

where

G(s) = s+

∫
ξs dµ− b. (7)

Lemma 3.1 implies once the assignment of using first strategy by each type of
agent is chosen (ξ is fixed), the game dynamics can be studied by looking at the
dynamics introduced by (7). Then, instead of working with the operator defined on
the multidimensional space (usually of infinite dimension), one can study dynamics
of the one-dimensional map. Due to the conjugacy, results for the map of the real
line can be applied to the set on which F (ξ) evolves.6

Dependence on learning rate. In this note we analyze what happens for varied
values of the learning rate. To stress the dependence of G and ξs on the learning rate,
we will write Ga instead of G, Fa instead of F and ξa,s instead of ξs. The operator Fa
has multiple fixed points, usually infinitely many. Nevertheless, once ξ is fixed (and
thus Ga is introduced by (7)), the equilibrium is unique.

Theorem 3.2. For every learning rate a the map Ga has a unique fixed point s∗a.
Moreover, s∗a is a fixed point of Ga if and only if the costs of both strategies are equal.

From Theorem 3.2 and Lemma 3.1 follows uniqueness of the fixed point once ξ ∈
M(Ω, I) is chosen. As the costs of both strategies are equal, no individual is motivated
to change strategy, thus s∗a determines Nash equilibrium of the game. So, knowledge
of initial assignment of choosing strategies by every type of agents dictates unique
equilibrium state, which is Nash equilibrium of the game. Therefore, usually the
game has infinitely many Nash equilibria.

Remark 3.3. From (7) we see that Ga(s) = s only when
∫
ξsdµ = b, so the expected

value of ξs is equal to the asymmetry of costs ratio b.7

Corollary 3.4. If ζ is a fixed point of Fa then ζ is a Nash equilibrium of the game.

5Throughout the paper, when we refer to an arbitrary function from M(Ω, I) we denote it by ζ,
while once we use a fixed function we denote it by ξ.

6The set on which F (ξ) evolves is usually complicated, see e.g. Figure 1.
7One may want to compare heterogeneous with homogeneous case. In the latter, see [9], the only

Nash equilibrium is b, which attracts everything for sufficiently small a. As we show in the examples
this is not the case for heterogeneous case.
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All these equilibria share two common features: costs of both strategies at equi-
librium are equal and the expected value of ξs is equal to the asymmetry of costs
ratio.

We introduce two examples, which we will use further in the article to concretely
demonstrate our results. The first one describes a setting in which a change in the
learning rate of agents is induced by a change of one parameter. This is possibly the
simplest setting that encapsulates all the complex phenomena studied in this work.

Example 1. We introduce a one parameter family of maps. Namely, we fix the
function a and consider the family of maps {GAa}A∈(0,∞). We will call it an A-
family. Let us look at a concrete simple (but non-trivial) A-family. We consider two
types of agents Ω = {1, 2} with measure µ equally distributed µ({1}) = µ({2}) = 0.5.
The learning rates are a(1) = 1, a(2) = 3, the asymmetry of costs is set b = 0.3 and
we choose the map ξ such that ξ(1) = 0.2 and ξ(2) = 0.6. Then

ξAa,s(1) =
0.2

0.2 + 0.8 exp(As)
=

1

1 + 4 exp(As)
,

and

ξAa,s(2) =
0.6

0.6 + 0.4 exp(3As)
=

3

3 + 2 exp(3As)
.

Therefore,

GAa(s) = s+
1

2 + 8 exp(As)
+

3

6 + 4 exp(3As)
− 0.3.

In the second example, we consider a more heterogeneous setting consisting of mul-
tiple (999) types of agents with equally distributed measure. This example demon-
strates a more realistic learning dynamics of a diverse population.

Example 2. Let Ω = {1, 2, 3, . . . , 999} with equidistributed measure. The learning
rate parameters for each type of agents are defined by a(i) = 1.2(5 + (i mod 31)).
The assymetry of costs is set to b = 0.3. The initial condition is such that ζ(i) =
0.0001 + (i mod 23)/24 with s = 0.8

Learning in games can provide the basis for equilibrium prediction, which is excep-
tionally desirable e.g. in economics or computer science, as convergence to equilibrium
guarantees predictable long-term behavior. From this perspective, fundamental ques-
tion is whether the behavior of the system will stabilize at the static equilibrium
prediction (Nash equilibrium). We show that this depends on the (choice of) a. In
fact, learning dynamics converges exactly to one of the equilibria when agents are
learning slowly. dynamics is relatively simple.

Theorem 3.5. If supω∈Ω a(ω) < 8, then fixed point of Ga is globally attracting.

Corollary 3.6. If supω∈Ω a(ω) < 8, then for every ζ ∈M(Ω, I) the sequence (F n(ζ))∞n=0

converges pointwise to a fixed point of F .

Therefore, as long as learning rates of all agents are small, the system will equili-
brate at the unique fixed point of Ga, where the costs of both paths are equal. Thus,
the dynamics will be relatively simple and the equilibrium prediction agrees with the

8ζ∗(µ) is a good approximation of the Lebesgue measure on the interval [0, 1].
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long-term behavior of learning in games. Nevertheless, the equilibrium will change
due to the way in which the assignment of frequencies for types of agents is performed
(the choice of ζ).

Now, let us consider the case when agents behave aggressively (more greedy algo-
rithmically).
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Figure 1. Bifurcation diagram of the whole system for Example 1.
The diagram lives in a two-dimensional manifold embedded in a three-
dimensional space. The shadows (in gray) are the projection of the flow
onto ξ(1) and ξ(2) planes. Parameter A varies from 0 to 14. For low
values of A the flow converges to a fixed point of the map GAa. As A
increases, the flow becomes unstable or chaotic, in agreement with The-
orem 3.7.

Theorem 3.7. If b 6= 1/2 and the sequence (ak)
∞
k=1 of measurable functions from

Ω to (0,∞) converges pointwise to infinity, then there exists K such that for every
k ≥ K the map Gak has periodic orbits of all periods and is Li-Yorke chaotic.

Corollary 3.8. Let b 6= 1/2. For any choice of ζ ∈ M(Ω, I) if the sequence (ak)
∞
k=1

of measurable functions from Ω to (0,∞) converges pointwise to infinity, then there
exists K such that for every k ≥ K the map Fak(ζ) is Li-Yorke chaotic.

Intuitively, the map is Li-Yorke chaotic if there exists a set of points such that
orbits of any two distinct points from this set approach each other arbitrarily close
and then go far from each other infinitely many times. Obviously the existence of such
set implies that orbits of points behave in unpredictable, complex way. Theorem 3.7
and Corollary 3.8 imply that, when cost functions differ, if all types of agents behave
aggressively enough (agents choose their strategies with sufficiently large learning
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rate), then the system will inevitably become chaotic. In such case any long-term
behavior will become extremely complex. We land in an unpredictable regime with
periodic orbits of different periods, sensitive dependence on initial conditions and
complicated dynamics. Yet, interestingly, time-average macroscopic order can emerge,
in agreement with static game-theoretic predictions.

Time-average behavior and the equilibrium predictions. We see already
that aggressive behavior of agents destabilizes the system. Nevertheless, once we look
at the macroscopic level (total flow), from the perspective of time averages, the time-
average total flow will eventually equilibrate at the game-theoretic equilibrium flow
value. For a given ζ ∈M(Ω, I), we consider its space average,

∫
ζ dµ. This expected

value of ζ can be interpreted as the total flow in strategy 1.
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Figure 2. Illustration of Corollary 3.10 in the A-family of Example
1. (Top) Bifurcation diagrams for each type of agent as one varies A
(the projection onto ξ(1) and ξ(2) of Figure 1). As A increases, the flow
becomes unstable or chaotic. (Bottom) Despite instability or chaos, the
time average total flow converges to the equilibrium flow b (magenta),
but the time average flow of each agent type converges to a different
value. Both plots are the results of the dynamics with T = 103 iterates,
which are obtained after a burn-in period with 104 iterates.
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Theorem 3.9. If ζn = F n(ζ) then there exists B > 0 such that for every T > 1 we
have ∣∣∣∣∣

T−1∑

n=0

∫
ζn dµ− Tb

∣∣∣∣∣ 6 B.

Corollary 3.10. If ζn = F n(ζ) then

lim
T→∞

1

T

T−1∑

n=0

∫
ζn dµ = b,

that is, the sequence of averages of the expected values of F n(ζ) (which is the same
as the sequence of expected values of averages of F n(ζ)) converges to b.

Corollary 3.10 tells us that the time averages of the space averages of the images of ζ
converge. We can ask whether the same is true if we do not take space averages. What
we know about the family of quadratic maps (and the bifurcation diagram) suggests
that for almost every value of A for GAa either there is a globally attracting periodic
orbit or an invariant measure absolutely continuous with respect to the Lebesgue
measure. Thus, we can expect that, by the Birkhoff Ergodic Theorem, the time
averages converge for almost every starting point. However, we cannot expect that
the limit behaves nicely as a function of A (see Figures 2 and 3). Moreover, these
figures show that for most of the values of A this limit is different than for the fixed
point (by Theorem 3.5, the limit for the fixed point – which is the same as the value at
the fixed point – is independent of A). In fact, if there exists an absolutely invariant
measure and the limit almost everywhere for this measure is different than the value
at the fixed point, then one can show that there are points for which the limit does
not exist.

Thus, although behavior of individual trajectories can be complicated, their time-
averages will always converge. Moreover, this convergence is to the same value in-
dependently on the choice of ζ and a. In addition, the time-average costs will also
converge.

Corollary 3.11. The average cost of each strategy converges to Nb(1− b).

Corollary 3.11 shows that time averages of both costs converge to the cost at the
Nash equilibrium of a game b. Thus, the limiting cost is the same as the cost of the
static game-theoretic prediction (cost at Nash equilibrium of the homogeneous game).

4. Discussion

Our reinforcement learning dynamics in games with heterogeneous populations
defined by (6) contains infinitely many Nash equilibria ζ∗ , each of them satisfying
the total flow condition

∫
ζ∗dµ = b. However, these equilibria are attracting only

when all the agents learn slowly (Corollary 3.6), then the learning dynamics will
stabilize at one of the equilibria. With fast learning agents, the learning dynamics
become unstable or chaotic (Corollary 3.8). Despite microscopic unpredictability of
the learning dynamics, the macroscopic time-average total flow and the time-average
cost converge to those defined by the total flow of value b (Corollary 3.10 and Corollary
3.11, respectively). In fact, b is the equilibrium flow in the homogeneous population
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Figure 3. Costs and time average costs for Example 1. The parameter
A is fixed at A = 12.2. After 104 burn-in iterates, for the next 75
iterates we plot costs C(j)(T ) (T = 1, 2, . . . , 75) of both strategies in

(a) and their time averages (1/T )
∑T

n=1 C(j)(n) in (b). We see that the
convergence of time-average costs, predicted in Corollary 3.11, is quite
fast.

case (consisting of one type of learning agents), which also coincides with the Nash
equilibrium of the congestion game, see Ref. [9].

Our results provide an explicit example of learning in games such that a classic
game-theoretic concept of equilibria agrees with a macroscopic order (time-average
total flow and time-average cost) that arises from a plausible non-equilibrium discrete-
time learning dynamics at the individual level. This connection between a static
variable prediction framework and the actual time-average prediction adds to the
ergodicity economics literature that has recently received increasing attention in eco-
nomics and econophysics, see Ref. [27].
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