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Abstract. We estimate from below the topological entropy of the generalized
Bunimovich stadium billiards. We do it for long billiard tables, and find the limit of
estimates as the length goes to infinity. We also get estimates for some shorter ta-
bles. We repeat this for generalized semistadium billiards, including the mushroom
ones.

1. Introduction

In this paper, we generalize the results of [6] to a much larger class of billiards. They
are similar to Bunimovich stadium billiards (see [3]), but the semicircles are replaced
by almost arbitrary curves. That is, those curves are not completely arbitrary, but the
assumptions on them is very mild. An example of such curves is shown in Figure 1.
We also consider the case when one of the curves is a vertical line segment. This class
includes Bunimovich mushroom billiards.
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Figure 1. Generalized Bunimovich stadium.

We consider billiard maps (not the flows) for two-dimensional billiard tables. Thus,
the phase space of a billiard is the product of the boundary of the billiard table and
the interval [−π/2, π/2] of angles of reflection. This phase space will be denoted as
M. We will use the variables (r, ϕ), where r parametrizes the table boundary by the
arc length, and ϕ is the angle of reflection. Those billiards have the natural measure;
it is c cosϕ dr dϕ, where c is the normalizing constant. This measure is invariant for
the billiard map.

However, we will not be using this measure, but rather investigate our system as
a topological one. The first problem one encounters with this approach is that the
map can be discontinuous, or even not defined at certain points. In particular, if we
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want to define topological entropy of the system, we may use one of several methods,
but we cannot be sure that all of them will give the same result.

To go around this problem, similarly as in [6], we consider a compact subset of the
phase space, invariant for the billiard map, on which the map is continuous. Thus,
the topological entropy of the billiard map, no matter how defined, is larger than or
equal to the topological entropy of the map restricted to this subset.

Positive topological entropy is recognized as one of the forms of chaos. In fact,
topological entropy even measures how large this chaos is. Hence, whenever we prove
that the topological entropy is positive, we can claim that the system is chaotic from
the topological point of view.

We will be using similar methods as in [6]. However, the class of billiards to which
our results can be applied, is much larger. The class of Bunimovich stadium billiards,
up to similarities, depends on one positive parameter only. Our class is enormously
larger, although we keep the assumption that two parts of the billiard boundary are
parallel segments of straight lines. Nevertheless, some of our proofs are simpler than
those in [6].

2. Assumptions

We will think about the billiard table positioned as in Figure 1. Thus, we will
use the terms horizontal, vertical, lower, upper, left, right. While we are working
with the billiard map, we will also look at the billiard flow. Namely, we will consider
trajectory lines, that is, line segments between two consecutive reflections from the
table boundary. For such a trajectory line (we consider it really as a line, not a
vector) we define its argument (as an argument of a complex number), which is the
angle between the trajectory line and a horizontal line. For definiteness, we take the
angle from (−π/2, π/2]. We will be also speaking about the arguments of lines in the
plane. Moreover, for x ∈ M, we define the argument of x as the argument of of the
trajectory line joining x with its image.

We will assume that the boundary of billiard table is the union of four curves, Γ1,
Γ2, Γ′3 and Γ′4. The curves Γ1 and Γ2 are horizontal segments of straight lines, and Γ2

is obtained from Γ1 by a vertical translation. The curve Γ′3 joins the left endpoints
of Γ1 and Γ2, while Γ′4 joins the right endpoints of Γ1 and Γ2 (see Figure 1). We will
consider all four curves with endpoints, so they are compact.

For ε ≥ 0, we will call a point p ∈ Γ′i (i ∈ {3, 4}) ε-free if any forward trajectory
of the flow (here we mean the full forward trajectory, not just the trajectory line),
beginning at p with a trajectory line with argument whose absolute value is less than
or equal to ε, does not collide with Γ′i before it collides with Γ′7−i.

Further, we will call a subarc Γi ⊂ Γ′i ε-free (see Figure 2) if:

(a) Γi is of class C1,
(b) every point of Γi is ε-free,
(c) there are points pi+, pi− ∈ Γi such that the argument of the line normal to Γi

is larger than or equal to ε at pi+ and less than or equal to −ε at pi− (see
Figure 2),

(d) Γi is disjoint from Γ1 ∪ Γ2.

Clearly, if Γi is ε-free then it is also δ-free for all δ ∈ (0, ε).
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Our last assumption is that there is ε > 0 and ε-free subarcs Γi ⊂ Γ′i for i = 3, 4,
such that Γ3 ∪ Γ4 is disjoint from Γ1 ∪ Γ2. We will denote the class of billiard tables
satisfying all those assumptions by H(ε).
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Figure 2. Curves Γi, i = 1, 2, 3, 4.

Observe that there are two simple situations when we know that there is ε > 0
such that Γ′i has an ε-free subarc. One is when there is a 0-free point pi ∈ Γ′i such
that there is a neighborhood of pi where Γi is of class C1 and the curvature of Γi at
pi exists and is non-zero (see Figure 3). The other one is when Γ′i is the graph of a
non-constant function x = f(y) of class C1 (then we take a neighborhood of a point
where f attains its extremum; this neighborhood may be large if the extremum is
attained on an interval), like Γ′3 (but not Γ′4) in Figure 1.

p
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Figure 3. Points p3 and p4.

We forget about the other parts of the curves Γ′i and look only at Γi, i = 1, 2, 3, 4
(see Figure 2).

Let us mention that since we will be using only those four pieces of the boundary
of the billiard table, it does not matter whether the rest of the boundary is smooth or
not. If it is not smooth, we can include it (times [−π/2, π/2]) into the set of singular
points, where the billiard map is not defined.

3. Coding

We consider a billiard table from the class H(ε). Since transforming the table by
homothety does not change the entropy, we may assume that the distance between Γ1

and Γ2 is 1. Now we can introduce a new characteristic of our billiard table. We will
say that a billiard table from the class H(ε) is in the class H(ε, `) if the horizontal
distance between Γ3 and Γ4 is at least `. We can think about ` as a big number (it
will go to infinity).

We start with a trivial geometrical fact, that follows immediately from the rule of
reflection. We include the assumption that the absolute values of the arguments are
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smaller than π/6 in order to be sure that the absolute value of the argument of T2 is
smaller than π/2.

Lemma 3.1. If T1 and T2 are incoming and outgoing parts of a trajectory reflecting
at q and the argument of the line normal to the boundary of the billiard at q is α, and
|α|, | arg(T1)| < π/6, then arg(T2) = 2α− arg(T1).

We consider only trajectories that reflect from the curves Γi, i = 1, 2, 3, 4. In order
to have control over this subsystem, we fix an integer N > 1 and denote by K`,N the
space of points whose (discrete) trajectories go only through Γi, i = 1, 2, 3, 4 and have
no N + 1 consecutive collisions with the straight segments.

We can unfold the billiard table by using reflections from the straight segments
(see Figure 4). The liftings of trajectories (of the flow) consist of segments between
points of liftings of Γ3 and Γ4. In K`,N they go at most N levels up or down.

Figure 4. Five levels of the unfolding. Only Γ3 and Γ4 are shown
instead of Γ′3 and Γ′4.

Now for a moment we start working on the lifted billiard. That is, we consider only
Γ3 and Γ4, but at all levels, as pieces of the boundary from which the trajectories
of the flow can reflect. We denote those pieces by Γi,k, where i ∈ {3, 4} and k ∈ Z.
Clearly, flow trajectories from some points (r, ϕ) will not have more collisions, so the

lifted billiard map F will be not defined at such points. We denote by M̃ the product
of the union of all sets Γi,k and the interval [π/2, π/2].

Now we specify how large ` should be for given N, ε in order to get nice properties
of the billiard map restricted to K`,N .
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Assume that our billiard table belongs to H(ε, `) and fix i ∈ {3, 4}, k ∈ Z. Call a

continuous map γ : [a, b]→ M̃, given by

γ(t) = (γr(t), γϕ(t)),

an (i, k, ε)-curve if γr([a, b]) = Γi,k and for every t ∈ [a, b] the absolute value of the
argument of the trajectory line incoming to γ(t) is at most ε. We can think of γ as a
bundle of trajectories of a flow incoming to Γi,k. In order to be able to use Lemma 3.1,
we will always assume that ε < π/6.

Lemma 3.2. Assume that the billiard table belongs to H(ε, `) and fix N ≥ 0, i ∈
{3, 4}, k ∈ Z, and j ∈ {−N,−N + 1, . . . , N − 1, N}. Assume that

(1) ` ≥ N + 1

tan ε

Then every (i, k, ε)-curve γ has a subcurve whose image under F (that is, F ◦ γ|[a′,b′]
for some subinterval [a′, b′] ⊂ [a, b]) is a (7− i, k + j, ε)-curve.

Proof. There are points c−, c+ ∈ [a, b] such that γr(c−) is a lifting of pi− and γr(c+) is
a lifting of pi+. Then, by Lemma 3.1, the lifted trajectory line outgoing from γ(c−)
(respectively, γ(c+)) has argument smaller than −ε (respectively, larger than ε). Since
the direction of the line normal to Γi,k at the point γr(t) varies continuously with t,
the argument of the lifted trajectory line outgoing from γ(t) also varies continuously
with t. Therefore, there is a subinterval [a′′, b′′] ⊂ [a, b] such that at one of the
points a′′, b′′ this argument is −ε, at the other one is ε, and in between is in [−ε, ε].
When the bundle of lifted trajectory lines starting at γ([a′′, b′′]) reaches liftings of
Γ7−i, it collides with all points of Γ7−i,k+j whenever j + 1 ≤ ` tan ε. By (1), this
includes all j with j ≤ N . Therefore, there is a subinterval [a′, b′] ⊂ [a′′, b′′] such that
(F ◦ γ)r([a

′, b′]) = Γ7−i,k+j. The arguments of the lifted trajectory lines incoming to
(F ◦ γ)([a′, b′]) are in [−ε, ε], so we get a (7− i, k + j, ε)-curve. �

Using this lemma inductively we get immediately the next lemma.

Lemma 3.3. Assume that the billiard table belongs to H(ε, `) and fix N ≥ 0 such
that (1) is satisfied. Then for every finite sequence

(k−j, . . . , k−1, k0, k1, . . . , kj)

of integers with absolute values at most N there is a trajectory piece in the lifted billiard
going between liftings of Γ3 and Γ4 with the differences of levels k−j, . . . , k−1, k0, k1, . . . , kj.

Note that in the above lemma we are talking about trajectory pieces of length
2j + 1, without requiring that those pieces can be extended backward or forward to
a full trajectory.

Proposition 3.4. Under the assumption of Lemma 3.3, for every two-sided sequence

(. . . , k−2, k−1, k0, k1, k2, . . . )

of integers with absolute values at most N there is a trajectory in the lifted billiard go-
ing between liftings of Γ3 and Γ4 with the differences of levels . . . , k−2, k−1, k0, k1, k2, . . . .
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Proof. For every finite sequence (k−j, . . . , k−1, k0, k1, . . . , kj) the set of points of Γ3 ×
[−π/2, π/2] or Γ4× [−π/2, π/2] whose trajectories from time −j to j exist and satisfy
Lemma 3.3 is compact and nonempty. As j goes to infinity, we get a nested sequence
of compact sets. Its intersection is the set of points whose trajectories behave in the
way we demand, and it is nonempty. �

Consider the following subshift of finite type (Σ`,N , σ). The states are

−N,−N + 1, . . . ,−1, 0, 1, . . . , N − 1, N,

and the transitions are: from 0 to 0, 1 and −1, from i to i+ 1 and 0 if 1 ≤ i ≤ N − 1,
from N to 0, from −i to −i − 1 and 0 if 1 ≤ i ≤ N − 1, and from −N to 0. Each
trajectory of a point from K`,N can be coded by assigning the symbol 0 to Γ3 ∪ Γ4

and for the parts between two zeros either 1, 2, . . . , j if the the first point is in Γ1,
or −1,−2, . . . ,−j if the first point is in Γ2. This defines a map from K`,N to Σ`,N .
This map is continuous, because the preimage of every cylinder is open (this follows
immediately from the fact that the straight pieces of our trajectories of the billiard
flow intersect the arcs Γi, i = 1, 2, 3, 4, only at the endpoints of those pieces, and
that the arcs are disjoint). It is a surjection by Proposition 3.4. Therefore it is a
semiconjugacy, and therefore, the topological entropy of the billiard map restricted
to K`,N is larger than or equal to the topological entropy of (Σ`,N , σ).

4. Computation of topological entropy

In the preceding section we obtained a subshift of finite type. Now we have to com-
pute its topological entropy. If the alphabet of a subshift of finite type is {1, 2, . . . , n},
then we can write the transition matrix M = (mij)

n
i,j=1, where mij = 1 if there is a

transition from i to j and mij = 0 otherwise. Then the topological entropy of our
subshift is the logarithm of the spectral radius of M (see [5, 1]).

In the case of large, but not too complicated, matrices, in order to compute the
spectral radius one can use the rome method (see [2, 1]). For the transition matrices
of (Σ`,N , σ) this method is especially simple. Namely, if we look at the paths given by
transitions, we see that 0 is a rome: all paths lead to it. Then we only have to identify
the lengths of all paths from 0 to 0 that do not go through 0 except at the beginning
and the end. The spectral radius of the transition matrix is then the largest zero of
the function

∑
x−pi − 1, where the sum is over all such paths and pi is the length of

the i-th path.

Lemma 4.1. Topological entropy of the system (Σ`,N , σ) is the logarithm of the largest
root of the equation

(2) x2 − 2x− 1 = −2x−N .

Proof. The paths that we mentioned before the lemma, are: one path of length 1
(from 0 directly to itself), and two paths of length 2, 3, . . . , N + 1 each. Therefore,
our entropy is the logarithm of the largest zero of the function 2(x−(N+1) + · · ·+x−3 +
x−2) + x−1 − 1. We have

x(1− x)
(
2(x−(N+1) + · · ·+ x−3 + x−2) + x−1 − 1

)
= (x2 − 2x− 1) + 2x−N ,

so our entropy is the logarithm of the largest root of equation (2). �
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Corollary 4.2. Assume that the billiard table belongs to H(ε, `) and fix N ≥ 0 such
that (1) is satisfied. Then the topological entropy of the billiard map restricted to K`,N

is larger than or equal to the logarithm of the largest root of equation (2).

A particular case of this corollary gives us a sufficient condition for positive topolog-
ical entropy. Namely, notice that the largest root of the equation x2−2x−1 = −2x−1

is 2.

Corollary 4.3. Assume that the billiard table belongs to H(ε, `) and ` tan ε ≥ 2.
Then the topological entropy of the billiard map is at least log 2, so the map is chaotic
in topological sense.

It is interesting how this estimate works for the classical Bunimovich stadium bil-
liard. In fact, for the estimate we will improve a little the corollary.

p

p

4+

4-

Figure 5. Computations for the stadium billiard.

Proposition 4.4. If the rectangular part of a stadium has the length/width ratio
larger than

√
3 ≈ 1.732 (see Figure 6), the billiard map has topological entropy at

least log 2.

Proof. We can take ε as close to π/6 as we want (see Figure 5), so we get the as-
sumption in the corollary ` > 2

√
3. However, the factor 2 (in general, N + 1 in (1))

was taken to get an estimate that works for all possible choices of Γi, i = 3, 4. For
our concrete choice it is possible to replace it by the vertical size of Γi,0 ∪ Γi,1 (or
Γi,0 ∪ Γi,−1, bit it is the same in our case). This number is not 2, but 3

2
. Thus, we

really get ` > 3
2

√
3. If `′ is the length of the rectangular part of the stadium, then

` = `′ + 2 ·
√
3
4

= `′ + 1
2

√
3. This gives us `′ >

√
3. �

Figure 6. Stadium billiard with topological entropy at least log 2.

Now we can prove the main result of this paper.
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Theorem 4.5. For the billiard tables from the class H with the shapes of Γ3 and Γ4

fixed, the lower limit of the topological entropy of the generalized Bunimovich stadium
billiard, as its length ` goes to infinity, is at least log(1 +

√
2).

Proof. In view of Corollary 4.2 and the fact that the largest root of the equation
x2 − 2x − 1 = 0 is 1 +

√
2, we only have to prove that the largest root of the

equation (2) converges to the largest root of the equation x2−2x−1 = 0 as N →∞.
However, this follows from the fact that in the neighborhood of 1+

√
2 the right-hand

side of (2) goes uniformly to 0 as N →∞. �

5. Generalized semistadium billiards

In a similar way we can investigate generalized semistadium billiards. They are
like generalized stadium billiards, but one of the caps Γ′3,Γ

′
4 is a vertical straight line

segment. The other one contains an ε-free subarc. This class contains, in particular,
Bunimovich’s Mushroom billiards (see [4]), see Figure 7. We will be talking about
the classes H1/2, H1/2(ε) and H1/2(ε, `) of billiard tables.
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Figure 7. A mushroom.

When we construct a lifting, we add the reflection from the flat vertical cap. In
such a way we obtain the same picture as in Section 3, except that there is an
additional vertical line through the middle of the picture, and we have to count the
flow trajectory crossing it as an additional reflection (see Figure 8). Note that since
we will be working with the lifted billiard, in the computations we can take 2` instead
of `. In particular, inequality (1) will be now replaced by

(3) ` ≥ N + 1

2 tan ε

Computation of the topological entropy is this time a little more complicated. We
cannot claim that after coding we are obtaining a subshift of finite type. This is
due to the fact that if Γ′i is a vertical segment, we would have to take Γi = Γ′i, and
Γi would not be disjoint from Γ1 and Γ2. The second reason is that the moment
when the reflection from the vertical segment occurs depends on the argument of the
trajectory line.

The formula for the topological entropy of the subshift of finite type comes from
counting of number of cylinders of length n and then taking the exponential growth
rate of this number as n goes to infinity. Here we can try do exactly the same, but the
problem occurs with the growth rate, since we have additional reflections from the
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Figure 8. Unfolding.

vertical segment. This means that the cylinders of length n from Section 3 correspond
not to time n, but to some larger time. How much larger, depends on the cylinder.
However, there cannot be two consecutive reflections from the vertical segment, so
this time is not larger than 2n, and by extending the trajectory we may assume
that it is equal to 2n (maybe there will be more cylinders, but we need only a lower
estimate). Thus, if the number of cylinders (which we count in Section 3) of length
n is an, instead of taking the limit of 1

n
log an we take the limit of 1

2n
log an, that is,

the half of the limit from Section 3. In such a way we get the following results.

Proposition 5.1. Assume that the billiard table belongs to H1/2(ε, `) and fix N ≥ 0
such that (3) is satisfied. Then the topological entropy of the billiard map restricted
to K`,N is larger than or equal to one half of the logarithm of the largest root of
equation (2).

Proposition 5.2. Assume that the billiard table belongs to H1/2(ε, `) and ` tan ε ≥ 1.
Then the topological entropy of the billiard map is at least 1

2
log 2, so the map is chaotic

in topological sense.

Theorem 5.3. For the billiard tables from the class H1/2 with the shape of Γ3 or
Γ4 (the one that is not the vertical segment) fixed, the lower limit of the topological
entropy of the generalized Bunimovich stadium billiard, as its length ` goes to infinity,
is at least 1

2
log(1 +

√
2).

We can apply Proposition 5.2 to the Bunimovich mushroom billiard in order to get
entropy at least 1

2
log 2. As for the stadium, we need to make some computations,

and again, we will make a slight improvement in the estimates. The interior of
the mushroom billiard consist of a rectangle (the stalk) and a half-disk (the cap).



10 M. MISIUREWICZ AND H.-K. ZHANG

According to our notation, the stalk is of vertical size 1; denote its horizontal size by
`′. Moreover, denote the radius of the cap by t.

Proposition 5.4. If `′ > 1
2

√
16t2 − 1 then the topological entropy of the mushroom

billiard is at least 1
2

log 2.

Proof. Look at Figure 9, where the largest possible ε is used. We have t sin ε = 1/4.

ε ε
ε p

p

4+

4-

Figure 9. Computations for a mushroom.

Therefore, tan ε = 1/
√

16t2 − 1. Similarly as for the stadium, when we use (3)
with N = 1, we may replace N + 1 by 3

2
. Taking into account that we need a strict

inequality, we get ` > 3
4

√
16t2 − 1. However, ` = `′+ t cos ε = `′+ 1

4

√
16t2 − 1, so our

condition is `′ > 1
2

√
16t2 − 1. �

Figure 10. A mushroom with topological entropy at least 1
2

log 2.

Observe that the assumption of Proposition 5.4 is satisfied if the length of the stalk
is equal to or larger than the diameter of the cap (see Figure 10).
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