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Abstract. In his last paper, William Thurston defined the Master Teapot as the
closure of the set of pairs (z, s), where s is the slope of a tent map Ts with the
turning point periodic, and the complex number z is a Galois conjugate of s. In
this case 1/z is a zero of the kneading determinant of Ts. We remove the restriction
that the turning point is periodic, and sometimes look beyond tent maps. However,
we restrict our attention to zeros x = 1/z in the real interval (0, 1). By the results
of Milnor and Thurston, the kneading determinant has such a zero if and only if
the map has positive topological entropy. We show that the first (smallest) zero is
simple, but among other zeros there may be multiple ones. We describe a class of
unimodal maps, so-called R-even ones, whose kneading determinant has only one
zero in (0, 1). In contrast with this, we show that generic mixing tent maps have
kneading determinants with infinitely many zeros in (0, 1). We prove that the second
zero in (0, 1) of the kneading determinant of a unimodal map, provided it exists,
is always larger than or equal to 3

√
1/2 and if the kneading sequence begins with

RLNR, N ≥ 2, then the best lower bound for the second zero is in fact N+1
√
1/2.

We also investigate (partially numerically) the shape of the Real Teapot, consisting
of the pairs (s, x), where x in (0, 1) is a zero of the kneading determinant of Ts, and
s ∈ (1, 2].

1. Introduction

1.1. Master Teapot. In his last paper [Th], William Thurston defined the Master
Teapot as the closure of the set of pairs (z, s), where s ∈ (1, 2] is the slope of a tent
map Ts with the turning point periodic, and z ∈ C is a Galois conjugate of s (in fact
the name Master Teapot does not appear in [Th] but, according to [BDLW], it was
assigned to this object in Thurston’s 2012 course at Cornell University).

Let us recall what a Galois conjugate is. If the real number s is transcendental, the
Galois conjugates of s are not defined. If s is algebraic (i.e. a zero of a polynomial with
rational, equivalently integer, coefficients), we take the minimal polynomial of s, i.e.
the monic polynomial (polynomial with leading coefficient 1) with rational coefficients
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and with smallest degree, such that s is a zero of this polynomial. Then all the complex
zeros of this polynomial are Galois conjugates of s.

Since in the definition of the Master Teapot it is assumed that the turning point of
Ts is periodic, the map is Markov [ALM, p. 251]. The slope s is, by [ALM, Corollary
4.3.13], the exponential of the topological entropy. Hence, by [MT, Theorem 6.3], 1/s
is the smallest positive zero of the kneading determinant Ds of Ts. Moreover, if z ∈ C
is a Galois conjugate of s, then also 1/z is a zero of the kneading determinant of Ts –
see formula (4). This means that one way to investigate the Master Teapot is to look
at the zeros of the kneading determinants. We restrict our attention to real positive
zeros of Ds. In particular, since the radius of convergence of Ds is 1, we look at the
zeros in (0, 1). On the other hand, we do not assume that the turning point of Ts is
periodic, so we look at all s ∈ (1, 2].

Thus, we define the Real Teapot as the set

(1) {(s, x) : Ds(x) = 0, x ∈ (0, 1), s ∈ (1, 2]}

(note that we do not take the closure), see Figure 1. Consequently, we will concentrate
on tent maps (and often only on topologically mixing ones, that is, those with slopes
in (
√

2, 2]). However, whenever the proofs do not really require the unimodal maps
to be tent, we will consider general unimodal maps.

Figure 1. The Real Teapot. The horizontal axis is s from 1 to 2; the
vertical axis is x, from 1/2 to 1.

Our Real Teapot bears some resemblance to the set Σ̂ from [T]. However, we are
considering the family of all (not only Markov) tent maps with positive topological
entropy instead of quadratic maps, and we are looking only at the zeros in the real
interval (0, 1) instead of from the unit disk. This makes our set considerably smaller,
so we lose connectivity and perhaps local connectivity. Thus, considering the family of
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quadratic maps (or all unimodal maps) could allow us to get stronger results in those
directions, but by (5) it would lead us further from the original ideas of Thurston, by
introducing too many “non-Galois” points corresponding to the factor DB(xn) in (5).

1.2. Unimodal maps, kneading sequences and kneading determinants, tent
maps. By a unimodal map we will mean a continuous map f : [u, v]→ [u, v], strictly
increasing on [u, c] and strictly decreasing on [c, v] for some c ∈ (u, v). Sometimes we
encounter maps that are strictly decreasing on [u, c] and strictly increasing on [c, v]
(which we also should call unimodal); then we conjugate them via an orientation
reversing homeomorphism and they become unimodal in the previous sense.

Notice that
(i) if f(c) ≤ c then f([u, v]) ⊂ [u, f(c)] ⊂ [u, c], f |[u,c] is increasing, and
(ii) if c ≤ f 2(c) < f(c) then f([c, f(c)]) ⊂ [c, f(c)], f |[c,f(c)] is decreasing.

In both cases (i),(ii) h(f) = 0. In what follows we will be interested in maps with
positive topological entropy, so we will consider only unimodal maps with

(2) f 2(c) < c < f(c).

Then for every x ∈ [f(c), v] one has f(x) ∈ [u, f 2(c)] and all trajectories of points
from [u, f 2(c)] are monotone or eventually enter the interval [f 2(c), f(c)]. Since
f([f 2(c), f(c)]) ⊂ [f 2(c), f(c)], the nontrivial dynamics induced by a unimodal map f
with positive topological entropy lives in [f 2(c), f(c)] only. The interval [f 2(c), f(c)]
is usually called the core of f .

If we use an appropriate increasing linear map as a conjugacy, a unimodal map
restricted to its core can always be considered on the interval [0, 1]; then 1 is mapped
to 0.

When we speak of unimodal maps, most of the time we consider them on their
cores and we assume that the core is always [0, 1].

To get the kneading (sequence) K = Kf of a unimodal map f : [0, 1] → [0, 1], we
code the trajectory of 1− using the symbols R = (c, 1] and L = [0, c) (i.e. we code the
trajectory of 1 but if the turning point c is periodic, we replace 1 by a slightly smaller
point and we take the limit as this point which is coded goes to 1 from the left).
Then we recode for a sequence of signs: start with +, R changes the sign, L does not;
then the kneading determinant is the power series D = Df with the corresponding
coefficients +1 and −1.

Thus, the kneading K always starts with RL and so the kneading determinant

D(x) =
∞∑
k=0

εkx
k

starts with D(x) = 1−x−x2 . . . . Each εk is equal to +1 or −1, depending on whether
fk is increasing or decreasing, respectively, at the point 1−. If the block of first k
symbols in K contains odd or even number of R’s, we have εk = −1 or εk = +1,
respectively. For an example, see Figure 2.

In the important case when the turning point c is periodic with period n we can also
write the kneading sequence in the form of a finite sequence RLS3 · · ·Sn−1C, where
Si ∈ {L,R}. In this case, i.e. when fn(c) = c, by [MT, Lemma 4.5, p. 486], the
nth term in the kneading determinant is always +xn and not −xn. The next term is
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−xn+1, since the turning point c is mapped to 1 and points in any small neighborhood
of 1 are coded by R. Then the kneading determinant 1− x− x2...+ xn − xn+1... is a
rational function with the denominator 1− xn.

0 1

f

cL R

Figure 2. A unimodal map with the kneading sequence K =
RLRRL . . . , the corresponding sequence of signs + − − + − − . . .
and the kneading determinant D(x) = 1− x− x2 + x3 − x4 − x5 . . . .

In the set of all kneading sequences we have a natural order which takes into
account the fact that the map is orientation preserving on the left lap and orientation
reversing on the right one. Namely, if we have two distinct kneading sequences, we
look for the first place where they differ. Then, if the number of symbols R in the
common part is even, the ordering of the kneading sequences is the one induced by
L < C < R, and if this number is odd, it is the one induced by R < C < L.

We will use the Collet-Eckmann condition, which tells us which sequences can be
kneading sequences (see [CE, p. 71] where such sequences are called maximal). It
tells us that K = A1A2 . . . AnAn+1 . . . is a kneading sequence of a unimodal map
if and only if K is greater than or equal to every shift of K, i.e., K ≥ AnAn+1 . . .
for every n. Those inequalities make sense since in the definition of the order we do
not have to assume that the sequences involved are kneading sequences of unimodal
maps.

In particular, it follows that if a kneading sequence starts with RLNR, then it does
not have any block of symbols L longer than N . This implies that in its sequence of
signs there are no blocks of the same symbol longer than N + 1.

According to [CCE, Lemma 2], for unimodal maps topological entropy is an in-
creasing function of the kneading sequence. We denote this function by H. Later,
in Theorem 2.4, we will show some conditions for the points at which it is strictly
increasing.

A particular example of a unimodal map is the map Ts, s ∈ (1, 2] restricted to its
core; as explained above we consider it rescaled to [0, 1]. The map Ts understood in
this way, has constant slope s (in absolute value), the turning point c = 1− 1/s and
Ts(1) = 0. Instead of KTs and DTs we use also notation Ks and Ds, respectively.
Recall that Ts is mixing if and only if Ts(0) < a where a is the fixed point in the
decreasing lap, i.e. a = s/(1 + s). This is equivalent to the condition s ∈ (

√
2, 2].

1.3. Galois conjugates of the slope. Zeros of the kneading determinant. If α
is an algebraic number, denote by Gal(α) the set of Galois conjugates of α, i.e. the set
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of zeros of the minimal polynomial of α. The minimal polynomial of α is irreducible
and conversely, if a monic polynomial with rational coefficients is irreducible and has
α as a zero, then it is the minimal polynomial of α [H, Theorem 11.6].

Let s ∈ (1, 2] be the slope of a tent map Ts. As explained above, 1/s is the smallest
positive zero of the kneading determinant Ds. Assume that s is such that the turning
point of Ts is periodic, which is an assumption in the definition of the Master Teapot.
Then s is an eigenvalue of the transition matrix associated to the orbit of the turning
point of Ts [ALM, Th. 4.4.5], so the slope s is an algebraic number.

Recall the following facts which hold true for the unimodal maps (restricted to the
core and rescaled to [0, 1]).

According to [MT, Theorem 9.1], the reciprocal of the zeta function for a unimodal
map f , when the turning point is periodic of period p, is (1− xp)D(x). At the same
time, by [BL, Theorem 1], for the subshift of finite type with the transition matrixM ,
the reciprocal of the zeta function is det(I−xM). Thus, (1−xp)D(x) = det(I−xM).
Therefore,

(3) D(x) =
det(I − xM)

1− xp
=
xp−1 det

(
1
x
I −M

)
1− xp

,

so the zeros of D(x) are reciprocal to the eigenvalues of M .
In particular, formula (3) implies that

(4)
{

1

z
: z ∈ Gal(s)

}
⊂ {z ∈ C : Ds(z) = 0} .

In Subsection 7.5 we will show an example where the opposite inclusion does not
hold. Note that {1/z : z ∈ Gal(s)} = Gal(1/s), which is a consequence of the fact
that if a polynomial is irreducible then also the polynomial with the same coefficients
but written in the reversed order, is irreducible.

If f is a unimodal map, its kneading determinant D is a function defined in the
open unit disk in the complex plane and, being analytic, has only isolated zeros. We
will study it (and still denote by D) in the real interval [0, 1), so for any ε ∈ (0, 1)
the interval (0, 1− ε] contains only finitely many zeros of D. In particular, if the set
of positive zeros of D is nonempty, then D has the first (smallest) zero that we will
denote as FZ(D).
(F1) By [MT, Theorem 6.3], the kneading determinant D has a zero in the open

interval (0, 1) if and only if the topological entropy h(f) > 0. In such a case

h(f) = log
1

FZ(D)
and D has no (complex) zeros in |z| < FZ(D).

Since h(f) ≤ log 2, we can see that if h(f) > 0 then FZ(D) ≥ 1/2.
(F2) Clearly D(x) > 0 for 0 ≤ x < FZ(D) and so, by [Pr, p.197, (1.17)],

D′(x) < 0 for 0 ≤ x < FZ(D).

If D has no positive zero, i.e. if h(f) = 0, we have both D(x) > 0 and
D′(x) < 0 for all 0 ≤ x < 1.

In the present paper we want to obtain more results on the zeros of the kneading
determinants of unimodal maps. To illustrate the complexity of the problem, look at
the maps Ts, s ∈ (1, 2]. They have positive entropy log s and, by (F1), the first zero of
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the kneading determinant for them is 1/s, a continuous function of the slope s. Unlike
the first zero, the situation with the second and higher zeros is more complicated.
Figure 3 shows all zeros except the first ones (the curve 1/s showing the first zeros
would be below the visible part of the figure). Vertical red lines are every 0.0015,
and horizontal ones every 0.01 (so the highest horizontal line is at x = 1 and the
lowest one at x = 0.79). Every horizontal pixel represents 1000 values of s. By
computational reasons, what we see in the highest row of the squares is not reliable;
see also Section 5. The set of the points plotted in the figure is the essential part of
the Real Teapot. The rest of it lies to the left or below the area shown in the figure.

When speaking of zeros of a kneading determinant, we will have only positive zeros,
i.e. zeros in (0, 1), in mind. In particular, the first zero or the second zero will mean
the smallest zero or the second smallest zero in (0, 1), respectively.

Figure 3. All zeros except the first ones, for the slopes s ∈ [
√

2, 2]. It
resembles Spanish Moss (Tillandsia usneoides), so maybe this should
be the name of our set, rather than Real Teapot?

1.4. Renormalization and star product. Many unimodal maps are renormaliz-
able. This means that there is an invariant cycle of intervals with disjoint interiors,
one of those interiors containing the turning point (if the period of that cycle is n,
we speak on n-renormalizability). In that case the kneading sequence of the map
is a star product K = A ∗ B, where AC is a finite kneading sequence, and B is an
arbitrary kneading sequence.

The map obtained by collapsing all intervals of the cycle, and their preimages, to
points, has kneading sequence AC. The map of the first return to an interval of the
cycle (we can choose any of them; it is called a restrictive interval), restricted to this
interval, has kneading sequence B.

Remember that it may happen that this map is again renormalizable.
In fact, the star product can be even applied to sequences that do not satisfy the

Collet-Eckmann condition. We send readers that want to find the formal definition of
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it to [CE]. Here we will need only to know two specific cases, which will be used in the
proof of Lemma 4.5. Namely, RL ∗RL∞ = RLL(RLR)∞, and RL ∗ L∞ = (RLR)∞.

Two things important to us are that topologically mixing tent maps are not renor-
malizable, and that there is a nice formula for the kneading determinant of renormal-
izable maps. Namely, if the kneading determinants of maps with kneading sequences
K,AC,B are DK , DA, DB respectively, K = A ∗B, and the length of AC is n, then,
according to [MT], equation (14.9), we have

(5) DK(x) = (1− xn)DA(x)DB(xn).

Observe that if n ≥ 3, then the zeros contributed by DB(xn) are not smaller than
3
√

1/2 (compare Subsection 1.5 below).
Related to this, it is well known that if K = A ∗ B and the length of AC is larger

than 2 then the topological entropies of unimodal maps with the kneading sequences
K and AC are equal. However, if the length of AC is 2 (that is, A = R; this
corresponds to a decreasing map, i.e. c = 0), then the topological entropy of a map
with the kneading sequence K is one half of the topological entropy of a map with
the kneading sequence B, because in this case DR(x) = 1/(1 + x). So, formula (5)
yields

(6) DK(x) = (1− x)DB(x2).

Observe that this case corresponds to a 2-renormalization.
To illustrate it, consider the tent map T2. Its kneading sequence is K2 = RL∞ and

the kneading determinant D2(x) = 1−x−x2−x3− . . . = (1−2x)/(1−x). If we want
to find the kneading determinant for T√2, we can proceed directly by realizing that
K√2 = RLR∞ and so D√2(x) = 1−x−x2+x3−x4+x5−x6+ . . . = (1−2x2)/(1+x),
or we can use formula (6). Indeed, T√2 is 2-renormalizable; [0, a] and [a, 1], where
a = 2−

√
2 is the fixed pint of T√2, form a 2-cycle of intervals. The first return map

to [a, 1], i.e. the restriction of (T√2)
2 to [a, 1], is topologically conjugate to T2. We

therefore have K√2 = R ∗K2 and by (6),

D√2(x) = (1− x)D2(x
2) = (1− x)

1− 2x2

1− x2
=

1− 2x2

1 + x
.

Similarly, one can get D 2k+1√
2
(x) from D 2k√2

(x).

1.5. Main results. We summarize our main results and describe the organization
of the paper.

In Section 2 we describe a class of unimodal maps, so-called R-even ones, whose
kneading determinant has just one zero in (0, 1); see Theorem 2.8.

In contrast with this, in Section 3 we show that generically the mixing tent maps
have kneading determinants with infinitely many zeros in (0, 1); see Theorem 3.2.

In Section 4 we investigate how large the second zero in (0, 1) of the kneading
determinant of a unimodal map is, provided it exists. In Theorem 4.12 we show that
it is always larger than or equal to 3

√
1/2 ≈ 0.793701 (if the kneading sequence begins

with RLNR, N ≥ 2, then the best lower bound for the second zero is in fact N+1
√

1/2,
see Proposition 4.7). Moreover, in the same theorem we show that the first zero, if
it exists, is always simple. In general this is not true for other zeros in (0, 1); see
Figures 12 and 13.
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The values s = 2k
√

2, k ≥ 0, belong to those for which the kneading determinant of
the tent map Ts has only one zero in (0, 1), but both for s→ 2− and s→ 2k

√
2, k ≥ 1,

the limits of the second zeros are equal to 1, see Theorem 4.14.
In section 5 we consider the set valued function sending the slope s to the set of

all zeros in (0, 1) of the kneading determinant of the tent map Ts. We look at a
neighborhood of the golden mean s3; this slope corresponds to the situation when
the turning point is periodic of period 3. Some computations and arguments indicate
that the graph of that set valued function, considered as a subset of the product of
the neighborhood of s3 with (0, 1) contains the union of countably many graphs of
continuous functions with various connected domains. The pictures show a fractal
structure.

In Section 6 we investigate what changes if we replace the Real Teapot by its
closure.

Finally, in Section 7, we suggest some questions for possible further research.

2. When kneading determinant has just one zero in (0, 1)

As we know, the kneading determinant of a unimodal map has a positive zero if
and only if the map has positive topological entropy. When does it have only one
positive zero?

We start with the following fact about power series.

Lemma 2.1. Let ϕ(x) =
∑∞

n=0 εnx
n, where εn ∈ {−1,+1}, ε0 = +1, and if εn = +1

then εn+1 = −1. Then ϕ′(x) < 0 for all x ∈ (0, 1).

Proof. Define sequences (ε
(k)
n )∞n=0 by induction on k. First set ε(1)n = +1 if n is even

and ε
(1)
n = −1 if n is odd. Suppose that (ε

(k)
n )∞n=0 is defined, let m be the smallest

integer for which ε
(k)
m 6= εm, and suppose that εm = −1. Then set ε(k+1)

n = ε
(k)
n if

n < m and ε(k+1)
n = −ε(k)n if n ≥ m. Observe that unless (ε

(k+1)
n )∞n=0 = (εn)∞n=0, if ` is

the smallest integer for which ε(k+1)
` 6= ε`, then ε` = −1, so we can continue induction.

Set ϕk(x) =
∑∞

n=0 ε
(k)
n xn (if the induction stopped, then we just repeat the last

ϕk). The functions ϕk (and ϕ) are analytic in the unit disk and the sequence (ϕk)
converges to ϕ uniformly on compact sets. Therefore the sequence (ϕ′k) converges to
ϕ′ uniformly on compact sets.

We have ϕ1(x) = 1
1+x

, so ϕ′1(x) = −1
(1+x)2

< 0 on (0, 1). Moreover,

ϕk+1(x)− ϕk(x) = − 2xm

1 + x
,

so

ϕ′k+1(x)− ϕ′k(x) = −2
mxm−1 + (m− 1)xm

(1 + x)2
< 0

on (0, 1). Therefore, (ϕ′k) is a decreasing sequence of negative functions on (0, 1), so
its limit ϕ′ is negative. �

As we know from Subsection 1.2, the kneading sequence of a unimodal map always
starts with RL. We will call such a sequence R-even if except the leading R, all other
Rs come in blocks of even lengths (that includes a possible infinite block). We will
also call a unimodal interval map R-even if its kneading sequence is R-even. We are
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really interested only in unimodal maps with positive topological entropy (then the
kneading determinant has at least one positive zero). In particular, in Corollary 2.6
we show that R-even unimodal maps do have positive topological entropy.

Recall that for a kneading sequence K we denoted by H(K) topological entropy of
maps with the kneading sequence K, and that H is increasing.

We are going to prove a theorem about kneading sequences at which H is strictly
increasing. This theorem is well known, but we could not find its proof in the litera-
ture.

Let f be a unimodal map of positive topological entropy. By [MT], it is semicon-
jugate to a tent map Tf of the same entropy. The semiconjugacy ϕf is increasing and
maps the right endpoint to the right endpoint (so it maps the turning point of f to
the turning point of Tf ). Thus, it maps the left (right) lap of f to the left (right) lap
of Tf . Denote the turning point of f by cf , and the turning point of Tf by cTf

.
We consider first unimodal maps with topological entropy larger than (1/2) log 2.

Lemma 2.2. If the point cTf
is periodic for Tf then either cf is periodic for f or the

kneading sequence of f is a star product.

Proof. Assume that T n
f (cTf

) = cTf
for some n > 0. If ϕ−1f (cTf

) consists of one point,
then fn(cf ) = cf ; otherwise it is an interval whose trajectory forms an invariant cycle
of intervals, so the kneading sequence of f is a star product. �

Lemma 2.3. If f and g have the same topological entropy larger than (1/2) log 2, and
different kneading sequences, then for each of f, g either the turning point is periodic,
or the kneading sequence is a star product.

Proof. Since h(f) = h(g), we have Tf = Tg. Thus, for one of the maps (say, f),
the kneading sequence is different than for Tf . Therefore, ϕf (fn(cf )) = cTf

for some
n > 0. This implies that T n

f (cTf
) = cTf

. Now we apply Lemma 2.2 to each of f, g. �

Now we replace the assumption that the topological entropy is larger than (1/2) log 2
by a weaker assumption that it is positive. We will write R∗m∗B for R∗R∗· · ·∗R∗B,
where R is repeated m times.

Theorem 2.4. Assume that K is the kneading sequence of a unimodal map with
positive entropy, for which the turning point is not periodic, and K is not of the form
R∗m ∗ B for m ≥ 0 and a kneading sequence B which is a star product. Then H is
strictly increasing at K.

Proof. Let K be the kneading sequence of f . Assume first that h(f) > (1/2) log 2.
Then by Lemma 2.3, for any kneading sequence K∗ 6= K we have H(K∗) 6= H(K).

Now, if K = R∗m ∗ B for a kneading sequence B which is not a star product,
we reduce it to the former case by taking m 2-renormalizations. We do not have to
consider the case when K and K∗ are 2-renormalizable different number of times,
because then clearly H(K∗) 6= H(K).

Finally, we use the fact that H is increasing. �

Since we work with unimodal maps of positive topological entropy (increasing on
the first lap and decreasing on the second lap, and restricted to the core, which is
always assumed to be [0, 1]), the kneading sequence always starts with RL. There-
fore, there are kneading sequences of the following four types: RLL . . . , RLR∞,



10 LL. ALSEDÀ, J. BOBOK, M. MISIUREWICZ, AND Ľ. SNOHA

RLR2NL . . . and RLR2N−1L . . . for N ≥ 1. Moreover, we have
RLR2N−1L · · · < RLR∞ < RLR2NL · · · < RLL . . . ,

and so we immediately get the following corollary (recall that a is the fixed point in
the decreasing lap).
Corollary 2.5. The function H is strictly increasing at RLR∞. In particular, if
f : [0, 1]→ [0, 1] is a unimodal map with positive topological entropy, then

(a) Kf = RLR∞ if and only if h(f) = (1/2) log 2.
(b) Kf = RLL . . . or Kf = RLR2NL . . . , N ≥ 1, if and only if the topological

entropy h(f) belongs to the interval ((1/2) log 2, log 2]. In this case f(0) < a.
(c) Kf = RLR2N−1L . . . , N ≥ 1, if and only if h(f) ∈ (0, (1/2) log 2). In this

case f(0) > a.
Corollary 2.6. All R-even unimodal maps have topological entropy in the interval
[(1/2) log 2, log 2].
Lemma 2.7. Let

∑∞
n=0 εnx

n be a kneading determinant and let K be the associated
kneading sequence. Then,

∑∞
n=0 εnx

n satisfies the assumptions of Lemma 2.1 if and
only if K is R-even.
Proof. To compute the kneading determinant from the kneading sequence, we start
with setting ε0 = +1, and then we replace R by −1 and L by +1. Next, we take the
products of initial parts to get our sequence (εn); recall that it starts with +1,−1,−1.

If the kneading sequence is R-even, then Rs come in pairs. Therefore, if εn = +1
for some n ≥ 1, then εn+1 = −1.

If there is an additional R at the end of a block of Rs, we will get εn = εn+1 = +1.
This completes the proof. �

From Lemmas 2.1 and 2.7 and Corollary 2.6 we get immediately the following
theorem.
Theorem 2.8. Assume that a unimodal map f is R-even. Then its kneading deter-
minant has negative derivative and a unique zero in (0, 1).

As before, for a unimodal map f : [0, 1] → [0, 1] we denote the turning point by c
and the fixed point (to the right of c) by a. We will also denote the prefixed point
(the point other than a, whose image is a) by a′, provided it exists. Obviously, it is
the case if and only if f(0) ≤ a.
Lemma 2.9. A unimodal map f with f(0) ≤ a is R-even if and only if the trajectory
of c misses the interval (a′, c).
Proof. If the trajectory of c misses the interval (a′, c) and x belongs to this trajectory,
then the assumptions x < c and f(x) > c imply f(x) ≤ a. This produces blocks of
Rs of even lengths. Similarly, if x ∈ (a′, c), then f(x) > a, and this produces a block
of Rs of odd length. �

Further, we denote by b the point in the decreasing lap for which f(b) = f(0).
For the purposes of this paper, the trajectory (or the orbit) of the turning point of
a unimodal map f with f(0) ≤ a (so a′ exists) is said to be twist if it misses the
intervals [a′, c) and [a, b].1 For an example of a twist orbit see Figure 4.

1One can show that our definition of a twist orbit is equivalent to the standard one from [B].
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Figure 4. A twist orbit P = {0 = p1 < p2 < · · · < p13 = 1}.

Combining Theorem 2.8 and Lemma 2.9 we obtain the following corollary.

Corollary 2.10. Assume that the trajectory of the turning point of a unimodal map
f is twist. Then its kneading determinant has negative derivative and a unique zero
in (0, 1).

Theorem 2.8 shows that R-evenness is a sufficient condition for the kneading de-
terminant to have a unique zero in (0, 1). The condition is not necessary. Such an
example exists even if the turning point is periodic.

Example 2.11 (One zero without kneading sequence being R-even). For n ∈ N, the
tent map Tsn with the kneading sequence RLLR2n−1C has the turning point periodic
with period 2n + 3. By (F1), xn = 1/sn ∈ (1/2, 1) is the first zero in (0, 1) of the
kneading determinant of Tsn . The kneading sequence Ksn = RLLR2n−1C can be
written also in the form Ksn = (RLLR2n−1L)∞. The beginning block RLLR2n−1

yields the beginning block of the kneading determinant,

Q(x) := 1− x− x2 − (x3 − x4)− (x5 − x6)− · · · − (x2n+1 − x2n+2)

= 1− x− x2 − x31− x2n

1 + x
=
x2n+3 − 2x3 − 2x2 + 1

1 + x
.

Then the kneading determinant is

Dsn(x) = Q(x) + x2n+3Q(x) + (x2n+3)2Q(x) + · · · = x2n+3 − 2x3 − 2x2 + 1

(1 + x)(1− x2n+3)
.

To show thatDsn(x) has only the zero xn in (0, 1), we look at the first three derivatives
of the polynomial Pn(x) = x2n+3−2x3−2x2 +1 (we think of Pn(x) and its derivatives
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as defined only on [0, 1]):

(Pn)′(x) = (2n+ 3)x2n+2 − 6x2 − 4x,

(Pn)′′(x) = (2n+ 3)(2n+ 2)x2n+1 − 12x− 4,

(Pn)′′′(x) = (2n+ 3)(2n+ 2)(2n+ 1)x2n − 12.

The third derivative is strictly increasing, with (Pn)′′′(0) < 0 and, since n ≥ 1,
(Pn)′′′(1) > 0. Hence, there is point tn ∈ (0, 1) such that (Pn)′′′(x) is negative for
x ∈ [0, tn) and positive for x ∈ (tn, 1]. It follows that (Pn)′′(x) is strictly decreasing
on [0, tn] and strictly increasing on [tn, 1]. Since (Pn)′′(0) < 0 and (Pn)′′(1) > 0, there
is a point qn ∈ (tn, 1) such that (Pn)′′(x) is negative for x ∈ [0, qn) and positive for
x ∈ (qn, 1]. Thus (Pn)′(x) is strictly decreasing on [0, qn) and strictly increasing on
(qn, 1]. Since (Pn)′(1) = 2n+ 3− 10, we distinguish two cases.
Case 1: n ∈ {1, 2, 3}. In this case (Pn)′(0) = 0 and (Pn)′(1) < 0. Hence, using the
properties of (Pn)′(x), we can see that (Pn)′(x) is negative for x ∈ (0, 1]. Therefore
(Pn)(x) is strictly decreasing on [0, 1] and so xn is the only zero of Pn in (0, 1).
Case 2: n ≥ 4. In this case (Pn)′(0) = 0 and (Pn)′(1) > 0. It follows that there
is a point rn ∈ (qn, 1) such that (Pn)′(x) is negative for x ∈ (0, rn) and positive for
x ∈ (rn, 1]. Thus, Pn(x) is strictly decreasing on [0, rn] and strictly increasing on
[rn, 1] Since Pn(0) > 0 and Pn(1) < 0, we can see that Pn(rn) < 0 and Pn(x) has
exactly one zero, which lies in (0, rn) (it is of course xn).

We have shown that in both cases Pn(x) has just one zero in (0, 1), so Dsn(x) has
just one zero in (0, 1).

We know from [B] that there are infinitely many slopes s for which the tent map
Ts has the trajectory of the turning point periodic and twist. This gives us countably
many values of s for which Ts is R-even. However, we can show that there are
uncountably many such values.

Theorem 2.12. There is a set R ⊂ (
√

2, 2) of cardinality of the continuum such that
for every s ∈ R the trajectory of the turning point of Ts is twist and the turning point
of Ts is not periodic.

Proof. For s ∈ [
√

2, 2] consider the points a, a′, c, b defined as before. Additionally set
d = Ts(0). We conjugate Ts via a map ψ : [0, 1] → [0, 1], defined by ψ(x) = x for
x ≤ a and ψ(x) = 1 + a − x for x ≥ a (we think of ψ having two values at a). The
result is gs = ψ ◦ Ts ◦ ψ−1 (see Figure 5). We set b′ = ψ(b). Since ψ is discontinuous,
so is gs. Then we modify gs to fs by making it constant on the intervals [a′, c] (where
we set fs to have value a) and [b′, 1] (where we define fs to have value d); see Figure 5.

The map fs can be considered as a continuous monotone circle map of degree 1.
Then it has a rotation number, which depends continuously on the map [ALM, Lemma
3.7.12].

Since fs depends continuously on s, this rotation number %(s) depends on s. Direct
computations show that %(

√
2) = 1/2 and ρ(2) = 0. Therefore there is a set R ⊂

(
√

2, 2) of cardinality of the continuum such that for each s ∈ R the rotation number
%(s) is irrational, and therefore fs has no periodic points.

Now fix s ∈ R and suppose that either the trajectory of the turning point of Ts
is not twist, or the turning point of Ts is periodic. Then there is n > 0 such that
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Figure 5. Construction of fs.

Ts(c), . . . , T
n−1
s (c) do not belong to [a′, c]∪ [a, b], but T n

s (c) does. Observe that n ≥ 3.
Further notice that the conjugacy ψ maps [a′, c] ∪ [a, b] onto [a′, c] ∪ [b′, 1]. Then
fk
s (c) = gks (c) for k = 1, . . . , n, and fk

s (c) /∈ [a′, c] ∪ [b′, 1] for k = 1, . . . , n − 1, while
fn
s (c) ∈ [a′, c] ∪ [b′, 1]. We have f 3

s ([a′, c]) = d and fs([b
′, 1]) = d. Since f 3

s (c) = d,
we have fn−3

s (d) = fn
s (c). Therefore, either fn−3

s (d) ∈ [a′, c], and then fn
s (d) = d, or

fn−3
s (d) ∈ [b′, 1], and then fn−2

s (d) = d. In both cases we get a periodic point for
fs, so s /∈ R, a contradiction. This proves that if s ∈ R then the trajectory of the
turning point of Ts is twist and the turning point of Ts is not periodic. �

3. Real zeros of kneading determinants of generic tent maps

We show that generically the mixing tent maps have kneading determinants with
infinitely many zeros in (0, 1).

Let Ts be the tent map with slope s, where
√

2 < s ≤ 2. For any n ≥ 3, set
vn = (1/2)1/n.

Lemma 3.1. If for Ts the turning point is periodic of period n, and V ⊂ (0, 1) is
a neighborhood of vn, then there is an open interval J ⊂ (

√
2, 2) having s as an

endpoint, and such that for every t ∈ J the kneading determinant of Tt has a zero
in V .

Proof. Let s be such that for Ts the turning point is periodic of period n. Suppose
first that vn is a zero of Ds of odd multiplicity. Then any function sufficiently close to
Ds has a zero close to vn. If t < s is close enough to s, then the series for Dt coincides
with the series for Ds up to some very large powers of x, so for x ∈ (0, (vn + 1)/2) the
function Dt is close to Ds. Consequently, Dt has a zero in V ∩ (0, (vn + 1)/2). This
means that s is the right endpoint of some interval J ⊂ (

√
2, 2), such that for every

t ∈ J the kneading determinant of Tt has a zero in V .
Suppose now that vn is not a zero ofDs of odd multiplicity. If the kneading sequence

of Ts is AC, consider a unimodal map f with kneading sequence A∗RL∞. According
to (5), we have

Df (x) = (1− xn) Ds(x) D2(x
n) = Ds(x) (1− 2xn).
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The function 1− 2xn has a simple zero at vn. By our assumption, vn is not a zero of
Ds of odd multiplicity, so it is a zero of Ds(x) · (1− 2xn) of odd multiplicity. If t > s
is close enough to s, then the series for Dt coincides with the series for Df up to some
very large powers of x. So by the same arguments as before, Dt has a zero in V . No
tent map has a kneading sequence between Ks and Kf , so s is the left endpoint of
some interval J ⊂ (

√
2, 2), such that for every t ∈ J the kneading determinant of Tt

has a zero in V . �

Now we can show that for a generic s ∈ (
√

2, 2), the kneading determinant of Ts
has infinitely many zeros in (0, 1). In fact, we prove a slightly stronger theorem.

Theorem 3.2. Let U ⊂ (0, 1) be a neighborhood of the set {vn : n ≥ 3}. Then the
set of those s ∈ (

√
2, 2), for which Ds has infinitely many zeros in U , is residual in

(
√

2, 2).

Proof. For every N > 3, the set of those s ∈ (
√

2, 2) for which the turning point of
Ts is periodic of period larger than N , is dense in (

√
2, 2). Therefore, by Lemma 3.1,

the set of those t ∈ (
√

2, 2) for which Dt has a zero in U ∩ (vN , 1), contains an open
dense subset ZN ⊂ (

√
2, 2). The intersection Z =

⋂∞
N=4 ZN is residual and if s ∈ Z

then Ds has infinitely many zeros in U . �

4. Lower bounds for the second zero of the kneading determinant

In this section we prove that the second positive zero of the kneading determinant
of a unimodal map with positive entropy, if it exists, is greater than or equal to
3
√

1/2 ≈ 0.793701.
Consider the family

D := {g : g is a differentiable function [0, 1)→ R and g(0) = 1}.
Our unimodal maps are defined on [0, 1], with the first lap increasing and the second

one decreasing, with the turning point mapped to 1 and 1 mapped to 0. Notice that
the restriction of the kneading determinant of any unimodal map to the interval [0, 1)
belongs to D .

The next lemma and its proof are illustrated in Figure 6.

Lemma 4.1. Let D,D+ ∈ D and let α, β, γ be such that 0 < α < γ < β < 1. Assume
that

(i) D(x) ≤ D+(x) for x ∈ (0, β), with D+(x) < 0 for x ∈ (α, β),
(ii) D′(x) < 0 for x ∈ (0, γ).

Then D has a unique zero in (0, α] (which, of course, is the first zero of D), and the
function D has negative derivative at it. Moreover, the second positive zero of D, if
it exists, is in [β, 1).

Proof. Since D(0) = 1 and D(α) ≤ D+(α) ≤ 0, the function D has a zero in (0, α].
This zero is unique and D has negative derivative at it, since D′(x) < 0 for x ∈ (0, α].
Suppose D has the second positive zero z. Then z > α, and since D(x) ≤ D+(x) < 0
for x ∈ (α, β), we get z ≥ β. �

Typically, we will use the next lemma inductively to obtain a power series D+

satisfying the assumptions of Lemma 4.1 from a power series D.
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Figure 6. The functions D and D+ from Lemma 4.1.

Lemma 4.2. Let D(x) = 1 +
∑∞

k=1 εkx
k and D̂(x) = 1 +

∑∞
k=1 δkx

k, where εk, δk ∈
{−1, 1}.

(1) If δk ≥ εk then D(x) ≤ D̂(x) and D′(x) ≤ D̂′(x) for every x ∈ (0, 1) (more-
over, these two inequalities are strict provided the inequality δk ≥ εk is strict
for at least one k).

(2) If there exists n such that εn = −1 and εn+1 = 1, δk = −εk for k = n, n+1, and
δk = εk otherwise, then D(x) < D̂(x) for every x ∈ (0, 1) and D′(x) < D̂′(x)
for every x ∈

(
0, n

n+1

)
.

Proof. Part (a) is obvious. To prove (b), notice that D̂(x)−D(x) = 2xn(1− x), and
this is positive for every x ∈ (0, 1), while its derivative is 2(n + 1)xn−1

(
n

n+1
− x
)
, so

it is positive for all x ∈
(
0, n

n+1

)
. �

If f is a unimodal map, denote by a the fixed point in the decreasing lap.
Now we are ready to prove that the second positive zero of the kneading determinant

of a unimodal map f , if it exists, is greater than or equal to 3
√

1/2. This will follow
from a series of propositions. In each of them we will consider only unimodal maps
with kneading sequences of a particular form, as follows.

• The cases K = RLR∞ and K = RLR2NL . . . with N ≥ 1, will be dealt with
in Proposition 4.3.
• The case K = RL∞ is covered by Proposition 4.4.
• The case K = RLNR . . . , where N ≥ 2, is covered by Proposition 4.7 (in this
proposition we prove even a stronger result – we find the best lower bound for
the second zero as a function of N).
• The case K = RLR2N−1L . . . with N ≥ 1, is covered by Proposition 4.11.

Then the main result of this section is Theorem 4.12.
Note that here we are basically using the version of the kneading theory that does

not use the symbol C (see Subsection 1.2).

Proposition 4.3. (K = RLR∞ or K = RLR2NL . . . , N ≥ 1) Let f be a uni-
modal interval map, with the kneading sequence K equal to RLR∞ or beginning with
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RLR2NL . . . with N ≥ 1. Then the kneading determinant D of f has exactly one
zero x0 in the interval [0, ξ), where ξ is the second positive zero of the polynomial
2x7 − x2 − x + 1 (approximately 0.816041, which is larger than 3

√
1/2). Moreover,

D′(x0) < 0.

Proof. If the kneading sequence of f is RLR∞, then D(x) = 1−2x2

1+x
, so it has a unique

zero in (0, 1), namely
√

1/2 (which lies in [0, ξ)). Otherwise, since K begins with
RLR2NL . . . and every kneading sequence is maximal, it follows that K cannot have
subsequences of two consecutive Ls. In particular, K begins with RLR2NLR.

Therefore, the sequence of signs of the power series for the kneading determinant
D of f (including a + for the leading 1) begins with +−−(+−)N −+ and it has no
blocks of the same sign of length larger than 2.

We will modify this sequence of signs by induction, using Lemma 4.2(b), to obtain
a power series D+, corresponding to the sequence of signs + − −(+−)N(− + +)∞,
that verifies the assumptions of Lemma 4.1 for appropriate α, β and γ. This means
that

D+(x) = 1− x− x2 + x3(1− x+ . . .+ x2N−2 − x2N−1)
+ x2N+3(−1 + x+ x2 − x3 + x4 + x5 − . . . )

= 1− x− x2 + x3
1− x2N

1 + x
+ x2N+3−1 + x+ x2

1− x3

=
1− 2x2

1 + x
− 2x2N+3 1− x2 − x3

(1 + x)(1− x3)
.

Clearly, D,D+ ∈ D , and by Lemma 4.2,

(7) D(x) ≤ D+(x) for x ∈ (0, 1), and D′(x) ≤ (D+)′(x) for x ∈ (0, 7/8)

(the minimum power of x affected by the rule (−+) 7→ (+−) is 7 or higher).
To simplify computations, we are going to use Lemma 4.1 not for D and D+, but

for
D(x) := (1 + x)D(x) and D+(x) := (1 + x)D+(x),

for x ∈ [0, 1). Since D,D+ ∈ D , also D,D+ ∈ D . Moreover, from (7),

(8) D(x) ≤ D+(x) for x ∈ (0, 1) and D′(x) ≤ (D+)′(x) for x ∈ (0, 7/8)

because, for x ∈ (0, 7/8),

(D)′(x) = D(x) + (1 + x)D′(x) ≤ D+(x) + (1 + x)(D+)′(x) = (D+)′(x).

Since

D+(x) = (1 + x)D+(x) = 1− 2x2 − 2x2N+31− x2 − x3

1− x3
,

by differentiating we get

(D+)′(x) = −4x− (4N + 6)x2N+21− x2 − x3

1− x3
+ 2x2N+3 2x+ x4

(1− x3)2
.

Let γ be the positive zero of the polynomial 1 − x2 − x3 (approximately, 0.754878).
This polynomial is decreasing for x > 0, so it stays positive for x ∈ (0, γ). Therefore,
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for x ∈ (0, γ),

(D+)′(x) < −4x+ 2x2N+3 2x+ x4

(1− x3)2
≤ −4x+ 2x5

2x+ x4

(1− x3)2
=

P (x)

2x(1− x3)2
,

with P (x) = x8 − 2x6 + 2x5 + 4x3 − 2.
We want to show that P (x) < 0 for x ∈ (0, γ). We have

P ′(x) = 8x7 + 10x4 + 12(x2 − x5) > 0

for x ∈ (0, 1), so it remains to show that P (γ) < 0. However,

P (x) = (x3 + x2 − 1)(x5 − x4 − x3 + 4x2 − 5x+ 8)− (4x− 3)(x+ 2),

and 4γ − 3 > 0, so indeed, P (γ) < 0, and consequently, (D+)′(x) < 0 for x ∈ (0, γ).
Since γ < 7/8, by (8) we have

(9) D(x) ≤ D+(x) for x ∈ (0, 1) and D′(x) ≤ (D+)′(x) < 0 for x ∈ (0, γ).

Thus, in order to use Lemma 4.1 for D and D+, we need to define α and β such
that 0 < α < γ < β < 1 and D+(x) < 0 for x ∈ (α, β). It is easy to check that
D+(γ) < 0, so D+ has exactly one zero in (0, γ). Call this zero α. The limit of
D+(x) as x increases to 1 is plus infinity, so D+ has the second largest positive zero,
β ∈ (γ, 1). With those definitions of α and β, our assumptions are satisfied. Thus,
the first positive zero x0 of D (and therefore, of D) exists and is in (0, α], and the
second positive zero of D (and therefore, of D), if it exists, is larger than or equal
to β. Moreover, by Lemma 4.1 applied to D and D+, (D)′(x0) < 0. Then also
D′(x0) < 0 as required (this is obvious, since D(x0) = 0 gives D(x0) = 0 and we have
(D)′(x) = D(x) + (1 + x)D′(x)).

Here α and β depend on N . However, if x ∈ (γ, 1), then D+(x) decreases as N
increases, so β ≥ β̂, where β̂ is the value of β obtained for N = 1. For N = 1 we have

D+(x) = 1− 2x2 − 2x5
1− x2 − x3

1− x3
=

2x8 + 2x7 − x3 − 2x2 + 1

1− x3

= (2x7 − x2 − x+ 1)
1 + x

1− x3
,

so β̂ = ξ. This completes the proof. �

Proposition 4.4. (K = RL∞) Let f be a unimodal interval map with the kneading
sequence RL∞. Then the kneading determinant of f has exactly one zero in [0, 1),
namely 1/2, and its derivative at this zero is negative.

Proof. The kneading determinant is 1 − x − x2 − x3 − · · · = (1 − 2x)/(1 − x). The
result follows. �

The next case to consider is a kneading sequence of the form K = RLNR . . . with
a finite N ≥ 2. To make the proof of Proposition 4.7 more transparent, we first prove
the following lemmas.

Lemma 4.5. Let N ≥ 2 and let f be a unimodal map such that the kneading sequence
of f begins with RLN(RLN−1R)nRLN for some n ≥ 0. Then the second zero of the
kneading determinant of f , if it exists, is strictly larger than N+1

√
1/2.



18 LL. ALSEDÀ, J. BOBOK, M. MISIUREWICZ, AND Ľ. SNOHA

Proof. Since the kneading sequenceK begins withRLN(RLN−1R)nRLN , it is straight-
forward to check that, regardless of whether n = 0 or n ≥ 1,

RLN−1 ∗ L∞ = (RLN−1R)∞ < K < RLN(RLN−1R)∞ = RLN−1 ∗RL∞.
Thus, by [CE, Theorem II.2.7 (i)], there is a unique kneading sequence B such that
K = RLN−1 ∗ B (due to the inequality K < RLN−1 ∗ RL∞ we have B 6= RL∞; we
will use this later). Therefore, since DRLN−1(x) = (1−x−x2− · · ·−xN)/(1−xN+1),
according to formula (5) we have

(10) DK(x) = (1− xN+1)DRLN−1(x)DB(xN+1) = (1− x− x2 − · · · − xN)DB(xN+1).

The polynomial P (x) = 1− x− x2 − · · · − xN is decreasing for x > 0, P (0) = 1, and
P (1) < 0, so it has a unique zero z in (0, 1). If x = N+1

√
1/2, then

P (x) = 1− x1− xN

1− x
= 1− x

1− 1
2x

1− x
= 1−

x− 1
2

1− x
=

3
2
− 2x

1− x
.

Since N + 1 ≥ 3, we have N+1
√

1/2 > 3/4, so P (x) < 0. Thus, z < N+1
√

1/2. On the
other hand, by Theorem 2.4, the function H is strictly increasing at RL∞ and since
B 6= RL∞, the entropy of a unimodal map with the kneading sequence B is strictly
smaller than log 2. Hence, by the fact (F1) in Subsection 1.3, the first zero of DB(x),
if it exists, is strictly larger than 1/2. Thus, the first zero of DB(xN+1), if it exists, is
strictly larger than N+1

√
1/2 (which in turn is strictly larger than z). Thus the second

zero of DK , if it exists, is strictly larger than N+1
√

1/2. �

Lemma 4.6. Let N ≥ 2 and let f be a unimodal map such that the kneading sequence
of f begins with RLNR, but not with RLNRLN . Then the derivative of the kneading
determinant of f is negative in (0, d), where d is the unique zero in (0, 1) of the
polynomial

Q(x) = −12x7 + 24x6 − 12x5 − 6x4 + 8x3 − 1

(approximately 0.663744).

Proof. IfN = 2, then the sequence of signs corresponding to the kneading determinant
D of f begins with +(−)3(+)k−, where 1 ≤ k ≤ 2. By replacing minuses by pluses
and −+ by +− (as we did in the proof of Proposition 4.3), we can get the sequence
of signs +−−−+ +−(+)∞. The corresponding power series is

D̂(x) = 1− x− x2 − x3 + x4 + x5 − x6 +
∞∑
i=7

xi =
1− 2x+ 2x4 − 2x6 + 2x7

1− x
.

By Lemma 4.2 we get D′(x) ≤ D̂′(x) for all x ∈ (0, 5/6).
If N > 2, then the sequence of signs corresponding to the kneading determinant D

of f begins with +(−)4, so again by replacing minuses by pluses and −+ by +− we
can get the same sequence +−−−++−(+)∞. Therefore, again we getD′(x) ≤ D̂′(x),
this time for all x ∈ (0, 4/5).

We have D̂′(x) = Q(x)/(1 − x)2, and Q has unique zero d in (0, 1). Moreover,
Q(x) < 0 for all x ∈ (0, d). Since d < 4/5, we get D′(x) < 0 for all x ∈ (0, d). �

Proposition 4.7. (K = RLNR . . . , N ≥ 2) Let N ≥ 2 and let f be a unimodal map
such that the kneading sequence of f begins with RLNR. Then the second zero of
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the kneading determinant of f , if it exists, is larger than or equal to N+1
√

1/2. The
equality holds if and only if the kneading sequence is RLN(RLN−1R)∞. Moreover, the
derivative of the kneading determinant of f at the first zero is negative.

Proof. Denote by K the kneading sequence of f and by D its kneading determinant.
As we noticed in the introduction, in the sequence of signs corresponding to K there
cannot be more than N + 1 of the same signs in a row.

First consider the important particular case when the kneading sequence is

K∗ = RLN(RLN−1R)∞ = RLN−1 ∗RL∞.

Then, according to (10), the kneading determinant is

(11)
D∗(x) = (1− x− x2 − . . .− xN)DRL∞(xN+1)

=
(1− x− x2 − . . .− xN)(1− 2xN+1)

1− xN+1
.

Denote by α∗ the unique positive zero of the polynomial 1 − x − x2 − . . . − xN and
set β∗ = N+1

√
1/2. If d is the number from Lemma 4.6, then

(12) α∗ ≤
√

5− 1

2
< d < 3

√
1/2 ≤ β∗

because (
√

5 − 1)/2 is the positive zero of the polynomial 1 − x − x2. Observe that
α∗ is the first zero and β∗ is the second zero of D∗, and D∗ is negative between them
(see Figure 7). By Lemma 4.6, the derivative of D∗ at the first zero is negative. This

x10

1

α∗ β∗︸︷︷︸
= N+1
√

1/2

D∗(x)

Figure 7. IfK∗ = RLN(RLN−1R)∞ then the 2nd zero of the kneading
determinant D∗(x) is β∗ = N+1

√
1/2, so this lower bound for the second

zero is attainable.

completes the proof in this particular case.
Now, if K = RLNR . . . is different from the considered particular case, then there

is a finite n ≥ 0 such that

K = RLN(RLN−1R)nA1A2 . . . AN+1 . . .
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where A1A2 . . . AN+1 6= RLN−1R. We are going to prove that in this case the second
zero of the kneading determinant, if it exists, is strictly larger than β∗ = N+1

√
1/2.

By Lemma 4.5, this is true if A1A2 . . . AN+1 = RLN . From now on we will therefore
additionally assume that A1A2 . . . AN+1 6= RLN , so A1A2 . . . AN 6= RLN−1.

The corresponding sequence of signs is

(13) +(−)N+1
(
(+)N −

)n
a1a2 . . . aN . . . ,

and the block a1a2 . . . aN is different from (+)N . It follows that this block begins with
at most N − 1 pluses (moreover, we know that a1 = − is possible only if n ≥ 1, since
for n = 0 we would have N + 2 minuses in a row). By using the rule (−+) 7→ (+−)
and taking ino account that there are no blocks of pluses longer than N + 1, by using
an argument very similar to that in the proof of Proposition 4.3, we always can get
the sequence

(14) +(−)N+1
(
(+)N −

)n(
(+)N−1 −+ +

)∞
.

By Lemma 4.2, for the kneading determinant D(x) corresponding to (13) and its
majorant D+(x) corresponding to (14), we have

(15) D(x) ≤ D+(x)

for all x ∈ [0, 1).
We have

D+(x) =1− x− . . .− xN+1 +
xN+2(1 + x+ . . .+ xN−1 − xN)(1− x(N+1)n)

1− xN+1

+
x(N+1)n+N+2(1 + x+ . . .+ xN−2 − xN−1 + xN + xN+1)

1− xN+2
.

By grouping the terms not containing n and those containing n we get

D+(x) =
(1− x− . . .− xN)(1− 2xN+1)

1− xN+1
− 2x(N+1)n+2N+1(1− x)(1− xN+1 − xN+2)

(1− xN+1)(1− xN+2)

= D∗(x)− 2x(N+1)n+2N+1(1− x)(1− xN+1 − xN+2)

(1− xN+1)(1− xN+2)
.

The polynomial S(x) = 1− xN+1 − xN+2 is decreasing for x > 0, with S(0) = 1 and
S(1) = −1, so it has a unique zero in (0, 1). We have

S(β∗) = S
(

N+1
√

1/2
)

= 1− 1/2−
(

N+1
√

1/2
)N+2

> 0.

Thus S(x) and, consequently, also the second term, which is subtracted from D∗(x),
are positive for all x ∈ (0, β∗]. From this and (15) it follows that

(16) D(x) ≤ D+(x) < D∗(x)

for all x ∈ (0, β∗].
Moreover, by Lemma 4.6, D(x) has negative derivative in (0, d) where, by (12),

α∗ < d < β∗. Therefore, applying Lemma 4.1 to functions D and D∗, we get that the
first zero of D is in (0, α∗] and the second zero, if it exists, is in [β∗, 1). Hence, the
derivative of D at the first zero is negative and the second zero, if it exists, is in fact
strictly larger than β∗, because (16) gives D(β∗) < D∗(β∗) = 0. This completes the
proof. �
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Remark 4.8. Fix N ≥ 3. By Proposition 4.7 and the beginning of its proof, N
√

1/2 is
the second zero of the kneading determinant corresponding to the kneading sequence
K∗ = RLN−2 ∗ RL∞. Since this K∗ is a star product, it is not a kneading sequence
of any tent map (as mentioned in Subsection 1.4, mixing tent maps are not renor-
malizable). However, RLN−2C, which is the same as (RLN−2R)∞, is the kneading
sequence of the tent map whose turning point is periodic with period N ; denote its
slope by sN . Since this kneading sequence is R-even, the corresponding kneading
determinant (1− x− x2 − · · · − xN−1)/(1− xN) has only one zero in (0, 1). By (F1),
sN is the reciprocal of this zero. Hence, sN is the positive zero of the polynomial
xN−1 − xN−2 − · · · − x− 1 (alternatively: the largest positive zero of the polynomial
(xN−1 − xN−2 − · · · − x− 1)(x− 1) = xN − 2xN−1 + 1). Here are some approximate
values: s3 = (1 +

√
5)/2 ≈ 1.61803, s4 ≈ 1.83929, s5 ≈ 1.92756, s6 ≈ 1.96595.

Unlike the point (sN , 1/sN) on the curve of first zeros, the point (sN ,
N
√

1/2), see
Figure 8, does not belong to the Real Teapot (there is no second zero in this case).
However, it belongs to its closure, since the limit of the second zero at the point sN
from the right (in the family of tent maps) is N

√
1/2 (see Section 5).

Figure 8. All zeros except the first ones, for the slopes s ∈ [
√

2, 2]
and with s3, s4, s5, s6 marked. We also marked slopes š9, š7, š5, that
correspond to the orbit of the turning point being Štefan of period
9, 7, 5 (see Subsection 7.1).

From Corollary 2.5 and Propositions 4.3, 4.4, and 4.7, we get immediately the
following corollary.

Corollary 4.9. If a unimodal map has topological entropy from [(1/2) log 2, log 2],
then the second zero of its kneading determinant, if it exists, is larger than or equal
to 3
√

1/2.

It remains to consider the case of a unimodal map g such that Kg = RLR2N−1L . . .
with finite N ≥ 1.
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Remember that by the zeros of a kneading determinant we mean, as always in this
paper, the zeros in (0, 1). Unimodal maps are assumed to be defined on the interval
[0, 1] which is their core.

Lemma 4.10. Let g : [0, 1]→ [0, 1] be a unimodal map with topological entropy h(g) ∈
(0, (1/2) log 2). Then there is a subinterval J of [0, 1] with g2(J) ⊂ J , and a unimodal
map g∗ : [0, 1]→ [0, 1], conjugate to g2|J , such that

(a) h(g∗) = 2h(g),
(b) the second zero z∗2 of Dg∗ exists if and only if the second zero z2 of Dg exists,

and in such a case z∗2 = z22,
(c) if z∗1 , z1 are the first zeros of Dg∗ , Dg respectively, and (Dg∗)

′(z∗1) < 0 then
(Dg)

′(z1) < 0.

Proof. By Corollary 2.5 we have g(0) > a, where a is the fixed point of g in the
decreasing lap. Then g is 2-renormalizable with restrictive intervals J0 = [0, a] and
J1 = [a, 1]. We have g(J0) = J1, g(J1) = J0 and the maps g0 = g2|J0 and g1 = g2|J1
are topologically conjugate through the conjugacy g|J1 : J1 → J0. It follows that
h(g0) = h(g1) = 2h(g).

The map g1, after restricting it to its core J ⊂ J1, is unimodal in our sense, so it
is conjugate to a unimodal map g∗ : [0, 1] → [0, 1]. Then h(g∗) = h(g1) = 2h(g) and
we get (a).

By (6),

(17) Dg(x) = (1− x)Dg∗(x
2),

which tells us immediately that (b) is true.
By formula (17), we have z∗1 = z21 , and

(Dg)
′(z1) = −Dg∗(z

∗
1) + 2z1(1− z1)(Dg∗)

′(z∗1) = 2z1(1− z1)(Dg∗)
′(z∗1) < 0,

and (c) follows. �

Proposition 4.11. (K = RLR2N−1L . . . , N ≥ 1) Let f be a unimodal map with
positive topological entropy and kneading sequence Kf = RLR2N−1L . . . , N ≥ 1.
Then there is k ≥ 1 such that h(f) ∈

(
1

2k+1 log 2, 1
2k

log 2
]
. If the kneading determinant

Df has at least two zeros in (0, 1) then its second zero is greater than or equal to(
3
√

1/2
) 1

2k (and hence strictly larger than 3
√

1/2). The derivative of Df at the first
positive zero is negative.

Proof. By Corollary 2.5, h(f) ∈ (0, (1/2) log 2) and f(0) > a, where a is the fixed point
of f in the decreasing lap. So there exists k ≥ 1 such that h(f) ∈

(
1

2k+1 log 2, 1
2k

log 2
]

(when k = 1 then even h(f) ∈
(

1
2k+1 log 2, 1

2k
log 2

)
). Now we use Lemma 4.10 induc-

tively, and at the last step (when the entropy is larger than or equal to (1/2) log 2)
Corollary 4.9. �

Propositions 4.3, 4.4, 4.7 and 4.11 immediately give us the following easy to re-
member fact.

Theorem 4.12. Let f be a unimodal interval map with positive topological entropy.
Then the derivative of the kneading determinant at the first positive zero is negative,
so it is a simple zero. The second positive zero of the kneading determinant of f ,
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if it exists, is greater than or equal to 3
√

1/2. It is equal to 3
√

1/2 if and only if the
kneading sequence of f is RLL(RLR)∞.

Lemma 4.10 shows that the Real Teapot has the block structure as expressed in
the following corollary.

Corollary 4.13. The Real Teapot (1) is a union

B0 ∪B1 ∪B2 ∪ . . . ,
where Bk, k = 0, 1, . . . is the set of those points of the Real Teapot whose first coor-
dinate is in

(
2k+1√

2, 2k
√

2
]
. Moreover,

Φ(Bk) = Bk+1 and Φ−1(Bk+1) = Bk, k = 0, 1, . . . ,

where Φ(s, x) = (
√
s,
√
x) and its inverse Φ−1(s, x) = (s2, x2).

Proof. The Real Teapot contains points (2, 1/2),
(√

2, 1/
√

2
)
,
(

4
√

2, 1/ 4
√

2
)
, . . . and

no other points whose first coordinate is of the form 2k
√

2, k = 0, 1, . . . . Indeed, for
s = 2 and s =

√
2 a direct computation shows that the kneading determinant has

only one zero and we know by (F1) that it is the reciprocal of the slope. For the rest
of those points this follows from Lemma 4.10(b). The map Φ sends each of them to
the next one. The rest follows from Lemma 4.10(b). �

To finish this section, for s ∈ (1, 2], let us define ϕ(s) as the second zero of the
kneading determinant of Ts if it exists, and 1 otherwise. For all s = 2k

√
2, k ≥ 0, the

kneading determinant has only one zero in (0, 1), so ϕ
(

2k
√

2
)

= 1. The next theorem
shows that the function ϕ is continuous at those points.

Theorem 4.14. We have

(18) lim
s→2−

ϕ(s) = lim
s→ 2k√2

ϕ(s) = 1

for all k ≥ 1.

Proof. As s goes to 2 from the left, the kneading sequence of Ts starts with RLNR,
and N goes to infinity. By Proposition 4.7, ϕ(s) ≥ N+1

√
1/2, so ϕ(s) goes to 1.

As s goes to
√

2, the kneading sequence of Ts starts with RLR2N (regardless of
whether the next symbol is R or L), and N goes to infinity. The corresponding
sequence of signs starts with +−−(+−)N , so the kneading sequence is

D(x) = 1− x− x2 + (x3 − x4) + (x5 − x6) + · · ·+ (x2N+1 − x2N+2) +
∞∑

k=2N+3

εkx
k,

where εk ∈ {−1,+1}. Set

D+(x) =1− x− x2 + (x3 − x4) + (x5 − x6) + · · ·+ (x2N+1 − x2N+2) +
∞∑

k=2N+3

xk

=1− x− x2 +
x3 − x2N+3

1 + x
+
x2N+3

1− x

=
1− 2x2

1 + x
+

2x2N+4

1− x2
.
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Then D(x) ≤ D+(x) and D′(x) ≤ (D+)′(x) for all x ∈ (0, 1).
We have

(D+)′(x) =
−2x2 − 4x− 1

(1 + x)2
+ x2N+34N + 8− (4N + 4)x2

(1− x2)2
≤ −1 +

(4N + 8)x2N

(1− x2)2

for all x ∈ (0, 1). The function ψN(x) = −1 + (4N + 8)x2N/(1 − x2)2 is increasing
on (0, 1). Fix ε ∈ (0, 1). If N is sufficiently large, then ψN(1 − ε) < 0, so D′(x) ≤
(D+)′(x) ≤ ψN(x) < 0 for all x ∈ (0, 1 − ε). Therefore D has at most one zero
(namely, the first one) in (0, 1− ε). Consequently, if s is sufficiently close to

√
2, then

ϕ(s) ≥ 1− ε. This proves (18) for k = 1.
Now (18) for k > 1 follows by Corollary 4.13. �

5. Close to period 3

Let us look at what happens close to the slope where the turning point is periodic
of period 3 (this slope is the golden mean; we will denote it by s3). Let us start
by looking at Figures 9, 10 and 11. On the horizontal axis there are slopes s of the
tent maps, on the vertical axis are the zeros of the kneading determinant (1 is at the
top). For x close to 1 the power series that defines the kneading determinant Ds(x)
converges very slowly, so numerical methods for finding the zeros fail. Therefore we
see a gap close to x = 1, which is an artifact. In fact, some coarse estimates suggest
that we cannot believe anything with x > 0.99 (the highest red squares).

In our pictures every horizontal pixel (there are 1800 of them) corresponds to 1000
values of s. The red grid makes it simpler to see approximate values of s and the
zeros of Ds.

In Figure 9 the slopes are from 1.61 to 1.67. Vertical red lines are every 0.0015, and
horizontal ones every 0.01 (so the highest horizontal line is at x = 1 and the lowest
one at x = 0.79). The position of s3 is easily visible not far from the left side of the
picture. To the left of s3 all zeros are close to 1, while to the right of it (and close
to it) it looks like there are additional zeros quite far from 1. A natural conjecture is
that those are second zeros.

Now let us stretch the horizontal axis. In Figure 10 the slopes are from 1.6175 to
1.6235, so the vertical red lines are every 0.00015. We see better the phenomena that
we noticed in Figure 9.

Let us continue and stretch the horizontal axis even more, and plot only second
(black) and third (cyan) zeros. In Figure 11 the slopes are from 1.6178 to 1.6184, so
the vertical red lines are every 0.000015. And indeed, it looks like to the right of s3
the zeros far from x = 1 are second zeros.

However, we see clearly another phenomenon (which we could have noticed earlier).
Namely, there is a change in the form of discontinuities in the zeros close to 1. In fact,
we cannot tell whether they are discontinuities; what we see may be just very steep
curves (however, let us refer to them as discontinuities). To the left of s3 (where they
are second zeros) they look like discontinuities from the left, while to the right of s3
(where they are third zeros) they look like discontinuities from the right. Moreover,
they correspond to the steep parts of graph for the second zeros, which are far from 1.

Let us try to explain the phenomenon that we observed. What happens imme-
diately to the left and right of s3? At s3 the kneading sequence is RLC, so the
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Figure 9. Slopes from 1.61 to 1.67, all zeros except the first ones.

Figure 10. Slopes from 1.6175 to 1.6235, all zeros except the first
ones.

kneading determinant is (1− x− x2)/(1− x3). It has only one zero in (0, 1) (in fact,
we knew it without calculations, because the period 3 orbit is twist). If s is slightly
smaller, a big chunk of the power series stays the same, so for a small ε > 0 the
kneading determinant has only one zero in (0, 1 − ε). If s is slightly larger than s3,
then the kneading determinant is close not to Ds3 , but to the kneading determinant
of the map with kneading sequence which is the star product of RL and RL∞ (the
kneading sequences in between, including the last one, are missing in our picture,
because there are no such tent maps). The kneading determinant of this map is
(1−x−x2)(1− 2x3)/(1−x3), so it has two zeros in (0, 1). The second zero is 3

√
1/2.
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Figure 11. Slopes from 1.6178 to 1.6184, second and third zeros.

This means that for s slightly larger than s3 there is a second zero close to 3
√

1/2 and
for a small ε > 0 the kneading determinant has only two zeros in (0, 1− ε).

This shows that on some interval (s3, ŝ) or (s3, ŝ] the second zero exists, so it is a
function of s. This function was already introduced in connection with Theorem 4.14
and denoted there by ϕ. From what was said above we know that

lim
s→(s3)+

ϕ(s) = 3
√

1/2.

The function ϕ is continuous, at least at points from (s3, ŝ). Indeed, the only values
of s at which the kneading determinant as a function of s is discontinuous, are those
at which the turning point is periodic (in the space of kneading determinants we take
the topology of uniform convergence on compact subsets of [0, 1)). If for a given s
the turning point is periodic of period n, then

lim
t→s−

Dt(x) = Ds(x) and lim
t→s+

Dt(x) = (1− 2xn)Ds(x).

Since the zero of 1− 2xn is much larger than the second zero of Ds, the second zero
of both limits is the same.

Let us take the largest ŝ for which the above holds. It is interesting what happens
at ŝ. There are three possibilities. The first one is that at ŝ the second and third
zeros meet, creating a second zero of multiplicity 2 (or larger), and when s increases,
this second zero disappears. Of course in this case some larger zero can become the
second one. The second possibility is that in the situation described in the preceding
paragraph the zero of 1− 2xn is smaller than the second zero of Ds, and it becomes
the second zero. The third possibility is that the limit of the second zero at ŝ is 1.

There is a strong numerical evidence that in our case the first possibility occurs.
In Figures 12 and 13 we see that between 1.619961091 and 1.619961092 the second
and third zeros collide.

If we start not from an s corresponding to a turning point of period 3, but from
any other s for which the turning point is periodic, we have a similar situation (in
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particular, lims→(sN )+ ϕ(s) = N
√

1/2 holds also for all N ≥ 4), but in general the zero
we consider will not be necessarily the second one. Then, other possibilities may be
realized. Anyway we see that our real teapot contains the union of countably many
graphs of continuous functions with various connected domains.

(a)

(b)

Figure 12. (A) The graph of the kneading determinant for the slope
1.619961091; 0.5 ≤ x < 1. (B) The part around the turning point is
zoomed in; we can see the second and the third zero.

(a)

(b)

Figure 13. (A) The graph of the kneading determinant for the slope
1.619961092; 0.5 ≤ x < 1. (B) While the value at the turning point
in Figure 12 was positive, now it is negative. Hence, for some slope
between 1.619961091 and 1.619961092, the value at the turning point
is equal to zero (the zero is multiple).
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The pictures strongly suggest that those graphs have a nice fractal structure. It
is an interesting question, what is their Hausdorff dimension (and is it the same for
every curve?).

For the “discontinuities” mentioned earlier we have an explanation only if s is close
to s3 from the left. Then we have the phenomenon described above, whenever the
turning point is a periodic point. However, since the period is much larger than 3,
everything happens close to x = 1, and moreover, to see the similar picture we would
have to stretch a lot the s-axis. We do not have the explanation for the “inverted
discontinuities” to the right of s3. It may be connected with the fact that these are
third zeros, or again, it may only look like this because we do not stretch enough the
s-axis.

6. Closure of the Real Teapot

In the definition of Thurston’s Master Teapot one takes the closure. If we consider
the closure of the Real Teapot (in (1, 2]× (0, 1)), what would change in our results?

The only section where interesting questions arise, is Section 2. We proved there
that if a unimodal map is R-even, then its kneading determinant has a unique zero
in (0, 1). The latter property for the map Ts is equivalent to {s} × (0, 1) intersecting
the Real Teapot only at one point (s, 1/s). If we replace the Real Teapot by its
closure, this property does not necessarily hold for R-even maps. For instance, for
s3, considered in Section 5, the kneading sequence of Ts3 is R-even (the orbit of the
turning point is even twist), but the point

(
s3,

3
√

1/2
)
belongs to the closure of the

Real Teapot.
However, such phenomenon is impossible if the orbit of the turning point of Ts is

not periodic.

Theorem 6.1. If the kneading determinant of the map Ts has only one zero and the
turning point of Ts is not periodic, then {s} × (0, 1) intersects the closure of the Real
Teapot only at one point (s, 1/s).

Proof. The function assigning to t the kneading determinant of Tt is continuous at
t = s. Since we are dealing with analytic functions, the same is true if we replace the
kneading determinant by its derivative. By Theorem 4.12, this derivative is negative
at the first zero of Ts. Our topology in the space of kneading determinants is that
of uniform convergence on compact sets. All this shows that for any compact subset
X of (0, 1) the set {s} ×X intersects the closure of the Real Teapot at most at one
point. Therefore, {s} × (0, 1) intersects the closure of the Real Teapot only at one
point. �

Together with Theorem 2.12, we get the following corollary.

Corollary 6.2. The set of those slopes s ∈ (
√

2, 2] for which {s}×(0, 1) intersects the
closure of the Real Teapot only at one point (s, 1/s), has cardinality of the continuum.

This corollary allows us to draw conclusions about the connectivity properties of
the closure of the Real Teapot.

Theorem 6.3. The closure of the Real Teapot in (1, 2] × (0, 1) has infinitely many
connected components.
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Proof. By Proposition 4.11, if s ∈ (21/2k+1
, 21/2k ], then the second zero of Ds, if it

exists, is greater than
(

3
√

1/2
)1/2k

. Since
(

3
√

1/2
)1/2k

> (1/2)1/2
k+1

, this means that
the hyperbola (strictly speaking, a part of a hyperbola) of the first zeros lies strictly
below the rest of the closure of the Real Teapot. This hyperbola is one connected
component. The vertical lines {s} × (0, 1), where s ∈ R, are disjoint from the rest
of the closure of the Real Teapot, so they divide it into infinitely many sets. Each of
those sets is either a connected component, or a union of connected components. �

Of course, since the closure of the Real Teapot has infinitely many connected com-
ponents, the same is true for the Real Teapot itself.

7. Questions

7.1. When a kneading determinat is between kneading determinants of
two Štefan cycles. We have shown in Section 4 that the second positive zero of
the kneading determinant of a unimodal map with positive entropy, if it exists, is
greater than or equal to 3

√
1/2 ≈ 0.793701. In particular it is true for any kneading

determinant DK(x) where
K3 = (RLR)∞ < K,

and K3 is the kneading sequence corresponding to the 3-cycle. Analogously, for k ≥ 1
and Štefan’s cycle of period 2k + 1 let us denote its kneading sequence K2k+1 =
(RLR2k−1)∞. By Corollary 2.10 its kneading determinant has a unique zero in (0, 1).
We are able to show that the second positive zero of the kneading determinant DK(x)

with K5 < K < K3, if it exists, is greater than or equal to 5
√

1/2 ≈ 0.870550. Can
be this observation generalized, i.e., is it true that the second positive zero of the
kneading determinant DK(x) with K2k+3 < K < K2k+1, if it exists, is greater than
or equal to 2k+3

√
1/2 (see Figure 8)?

7.2. When the turning point is periodic. For n ≥ 3, the number Un of all
unimodal n-cycles (more precisely, unimodal patterns of period n, according to the
terminology of [ALM]) is given by the formula

Un =
1

n

∑
d|n

d odd

µ(d)2
n
d
−1,

where µ is the Möbius function, see [WR] or [G]. For each of them we may consider the
corresponding connect-the-dots unimodal map and its kneading determinant which,
since the turning point is periodic with period n, has the form

1− x− x2 + ε3x
3 + · · ·+ εn−1x

n−1

1− xn
(with a Littlewood polynomial in the numerator, i.e. a polynomial whose all coef-
ficients are in the set {−1,+1}). We may ask how many zeros in (0, 1) does the
kneading determinant have. If, for given n, we check this for all Un kneading deter-
minants, how often do we get 1 zero, 2 zeros, etc.?

By checking periods from 3 to 23 which are prime numbers, we find that 2 zeros
appear for the first time for n = 11 and 3 zeros for n = 23. Moreover, for the period
23, among U23 = 182361 cases we get 1 zero 157760 times, 2 zeros 24598 times, 3
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zeros 3 times. That is, in 86.5% of cases there is only one zero. How is it for much
higher periods? Further, what is the smallest period nk when k zeros appear? If Nn

is the maximal number of zeros appearing for the period n, is it true that Nn/n→ 0
when n→∞?

7.3. Simple zeros. By Theorem 4.12, for the unimodal maps, the first zero in (0, 1)
of the kneading determinant is always simple. In general this is not true for other
zeros in (0, 1), see Figure 13(B). We conjecture that for a generic slope s the kneading
determinant of the tent map Ts has only simple zeros.

7.4. Topology of the Real Teapot. We saw in Section 5 that the Real Teapot
contains the union of countably many graphs of continuous functions with various
connected domains. Is it equal to such union? Does it have isolated points? If yes,
how many? Is it locally connected?

Another question is about the closure of the Real Teapot in (1, 2]× (0, 1). We saw
that it is not connected, but is it locally connected? And what happens if we take
the closure in [1, 2]× [0, 1] instead? Is it connected? Is it locally connected?

7.5. Galois conjugates vs. zeros of the kneading determinant. Suppose that
the turning point for Ts is periodic. Tiozzo, [T, Subsection 7.3], gives an example
where not all zeros of the kneading determinant of Ts are Galois conjugates of 1/s.
However, this example is the Štefan orbit (see [ALM]) of period 7. Štefan orbits are
twist, so those extra zeros do not belong to the real interval (0, 1). Does there exist
a similar example with the extra zeros in (0, 1)?
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