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Padé Approximants

Let F (z) be a formal power series at infinity with no positive powers of z and O,,, P,,
be polynomials of degree at most n defined by

(PpF —Qn)(2) =0 (z’"*l)

Such a pair of polynomials may not be unique, but their ratio always is. Indeed,

(PAQn = PnQ3)(2) = Pa(2) (PAF ~ @3)(2) = P (2)(PaF - @n)(2) = O (271)

which means that this difference must be identically zero. We let P,,(z) to be the monic
polynomial of smallest degree. The rational function (Q,,/P,,) (z) is called the diagonal
Padé approximant to F (z) of order n.
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(PAQn = PnQ3)(2) = Pa(2) (PAF ~ @3)(2) = P (2)(PaF - @n)(2) = O (271)

which means that this difference must be identically zero. We let P,,(z) to be the monic
polynomial of smallest degree. The rational function (Q,,/P,,) (z) is called the diagonal
Padé approximant to F (z) of order n.

If the power series for F'(z) is convergent and I" encircles infinity within the disk of
convergence, then

_ k _ _ k
0_}?‘2 (PuF - On)(2)dz ;gz Pa(2)F (2)dz

for k = 0,n — 1 and z belonging to the exterior of I'.



Orthogonal Polynomials

In particular, if /.« is a compactly supported measure on the real line, and

F(Z):/M

Z—X

is the Markov function of x, then

k
_ k _ z2%Pn(z)
O—?I{z Pn(z)F(z)dz—/ﬁiz_x dzdu(x)

for k =0,n — 1. Hence,

O:/kan(x)dy(x), k=0,n-1.

That is, P,, (x) is the n-th monic orthogonal polynomial w.r.t. x.



Orthogonal Polynomials

One can readily verified that up to normalization P,, (x) is equal to

HO H1 Hn

det 5
Hn-1 Hn H2n
1 X x"

where . = / xkdu(x). In particular, all the coefficients of P,, (x) are real.
Let A be the convex hull of the support 1. Write P, (x) = P(x)QO(x), where all the

zeros of O (x) either do not lie on A or have even multiplicity (O (x) = 1 if there are no
such zeros). Then (P P,,) (x) has constant sign on A. However, if deg P < n, then

/ (PPy) (x)dp(x) =0,

which is impossible. Hence, P, (x) has degree n and all its zeros are simple and
contained in A.



Recurrence Relations

Since (P, (x)), is a complete sequence,
XPp(x) = Ppy1(X) + CpnPr(x) +... + Cn,OPO(x)~
Observe that for each k < n — 1, it must hold that
nec = [ XPL() P ()dp() =0,

where my. := [ Pf (x)du(x). Hence, it holds that

[ XPp (x) = Ppy1(x) + by Pn(x) + ap1 Pyq1(x) ]

where P_1 :=0,Py=1,b, :=cCp,n = m,’,] /xP,,z,(x)d,u(x), and

ap-1:=Cn,n-1= m,_ll,l / XPp1(x) P (x)dp(x) = my [y, 1.

These three-term recurrence relations can be symmetrized:

[ XPn(x) = Van ppat (%) + bppn(x) + au_1pp-1(x), ]

where p,, (x) := (1/~/my;) P,, (x) is the n-th orthonormal polynomial.



Finite Jacobi Matrices

Let
by +fap 0 0 0 0 0 0 0
vag, b1 ya 0 0 0 0 0
o 0 a1 by +a; O 0 0 0

0 0 0 0 o --- 0 an—2  by1  Aapa
0 0 0 0 0 0 Van bn
Recurrence relations xp,, (x) = \/an pp+1(x) + bppn(x) + \Jan_1 pn-1(x) imply that

S

po(x) po(x) 0

P1(x) p1(x) 0

L S N

Pn-1 (X) Pn-1 (-x) 0
Pn(x) Pn(Xx) V?npn,+1 (x)

Hence, if 7, is defined with some b,, and a,, > 0 while (py (x)) ;';’(1) are defined via the

recurrence relations, then the eigenvalues of 7;, are precisely the zeros of p,,;1(x) and
the eigenvector corresponding to the eigenvalue 1 is (po(1) p1(A) -+ py nT.



Hermite-Padé Approximants and Multiple Orthogonal Polynomials

Let F (z) and F»(z) be two formal power series at infinity with no positive powers of
zand ji = (ny, ny) € N2 be a multi-index. If there exist polynomials Oy ; (z) and Py (z)
of degrees at most |7i| := ny + ny such that

(PiFi - 0;,:)(2) = O (Z_"i_l)

then the pair of rational functions (Qj; 1/Pj)(z) and (Qj; 2/ P;) (z2) is called type 11
Hermite-Padé approximant to the pair of functions Fi (z) and F>(z).
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Hermite-Padé approximant to the pair of functions Fi (z) and F>(z).

d (x
If 111, p1p are compactly supported measures on the real line and F; (z) = / M ,
Z—Xx

then

Oz/ka,;(x)d/,ti(x), k=0,n; — 1.

If P;; (x) is unique up to normalization and deg(P;;) = |7, then the multi-index 7i is
called normal. If every multi-index is normal, the system 1, u» is called perfect.



Nearest Neighbor Recurrence Relations

Let ey = (1,0) and &, = (0, 1). Assume that 7 and 7 + €, are normal. Then
xPj (x) = Py (x) — by 1 P (x)
is a polynomial of degree at most [ii| — 1 that is orthogonal to polynomials of degree at

most n; — 2 w.r.t. i;. Linear algebra and normality of 7 and 7i + ¢ show that it must
belong to a 2D subspace and that this subspace is spanned by P; z (x) and Pj;_z, (x).
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fi-&

That is,

XP;L (x) = P7l+ék (x) o bﬁ,k Pﬁ (x) A= aﬁvlpﬁ_él (x) ar aﬁ’zPﬁ_éz ()C)

where

XM P(0du (x)
[Py g (x)dpi (x)




Consistency Conditions

Recurrence relations imply that P;; (x) can be build in many different ways:

This, in particular, means that the recurrence coefficients cannot be arbitrary. It can be
shown that they must satisfy

biiz2 — brve, 1 =ba2 —bi,
2 2
Zaﬁ+ej Z djivé;, n+ej Lbnj _bﬁ+5i,jbﬁ,i’
k=1 k=1
aﬁ,i(bﬁ,j - ﬁ,,i) = aﬁ+<3j,i(bﬁ—éi,j - bﬁ—é,-,i)-



Jacobi Operators on a Lattice

Recurrence relations
xPj;(X) = Pyz, (%) + b 1 P (%) + a5 1 Pi-g, (x) + a5 2 Pz, (x)
naturally lead to two Jacobi operators on the lattice NN°:

(T i = fave, +baxfa + anifi-e, +aifi-g,

where f is a function on N2 (we call it a Jacobi operator because only the values of f* at
the nearest neighbors of /i are used to compute the value J; f at 7). Notice that

TP (x) = xP(x),

where P (x) = (Pj;(x));;. Aptekarev, Derevyagin, and Van Assche investigated these
operators and showed that to symmetrize their average:

1 1 1
(T = 5 Javey + 5 Javey + 5 (Big + b o) fii + a1 fi-ey + dinfiiz,
one needs to additionally require

biiva; 1~ bive; 2 = bivey 1 — Pivayo-

Besides the average, they could have also considered 7 := « /1 + (1 — k) J.



Fix N = (Ny, N») € N? and untwine all paths within connecting N and (0, 0) within
{it :ny < N1,ny < Np}into a tree 7y with the set of vertices V.

2,1)~0

(1,1) ~

(0,1) ~X = A(p) (1,00 ~Y = B(,)

(0,0) ~A=Xcn)2 (0,0) ~B=Yin,1 (0,00~C=Zcpn

We denote by IT: Vg — N the natural projection and by « : YV — {1,2} the child
function, i.e., ty = i iff [1(Y()) = TI(Y) + &; (We also write Y = Z.p, i, Z = Y(p))-



Jacobi Matrices on 7 corresponding to MOPs

Define functions V, W and o by
Vo = Klbﬂl,l + biN,Z and Vy = bH(Y),ty o
where K = (k1, k») is such that k1 + kp =1,

, Y#0,

WO =1 and Wy = ‘an(y“’))’q,
and oy € {0, 1} is such that

oo =0 and (-1)7YWy = any ).y ¥ # 0.

Jacobi matrix jk 5 on 75, corresponding to (41, p12) is defined by

- 1/2 OY(ch 1/2
Gou Dy =Vl Wy ¢ 3 DI i,
€c

If o = 0, this operator is self-adjoint, and, in general, it is S-self-adjoint with respect to
an indefinite inner product that depends on o.



Main Identity

Set

> -1/2
pY(Z) = mylpn(y) (z), my = n WZ /
Zepath(Y,0)

IfY #0,1(Y) =
(Fnr),

S

i, and 1y = k, then

1/2 oy, . 1/2
- VYPY (x) + WY/ pY(l’) (.X) w Z(_l) Y<Lh)'[ WY(/(rh,) le(ch),I (X)

o
(Vy Py () + Py, (0 + 3 () TVema Wy Py, ()

my

1
= (bﬁ,kPﬁ(X) + Pjiyg, (x) + Z a Py, (x)) = xpy (x).

Similarly, if we set Prio,,,) (2) = ki e (2) + ©2Pg.z (z), then

(T mr@®),

1 o,
% (VOPO(X) +Z(—1) (ch),l Wo(ch),l PO(('h),l (x))
1
- mo ((Klbﬁ,l v biﬁ,z)Pﬁ (x) +Za1\7,ipl\7—é,- (x))

1
= xpo(x) - %PH(O(P))(X)'



Main Identity

LetZ € Vg be a vertex with two children, Z; and Z,. Denote by b; (x) the function
that is equal to the restriction of p(x) to the subtree with the root at Z; and to zero
everywhere else. Then

(ji’}\-/bi(x)) = xpz, (x) = W) pz (x)

and
(e bi(®) = (D72 W, pz (x).

Hence, one can take a linear concatenation » (x) = w151 (x) + voby (x) such that
1/2
(T b)) =xbz,(x) = wiW;2pz ()

and
(jmb(x))z =0 = xbz(x)

(here its is important that Z has two and not one child).



Denote by Ey the set of zeros of Prjy)(x),Y € ’V[‘\i] = Vg5 U{O(p) }. We assume that

Ey CcR, #Ey =|II(Y)|, Y € (V;],

Ey OEY(P) =0, Y € (VI\7

These conditions are satisfied by multiple Hermite polynomials, multiple Laguerre
polynomials of the second kind, multiple Charlier polynomials, multiple Meixner
polynomials of the first kind (WVA), and Angelesco systems. Moreover, in all these
examples a; ; > 0,7 € N.

They are also satisfied by multiple Laguerre polynomials of the first kind,
Jacobi-Pifieiro polynomials, and multiple Meixner polynomials of the second kind
(WVA), and Nikishin systems, but with coefficients «;; ; changing sign.



Theorem (S. Denisov and M.

Let Ey be the set of zeros of Pryy)(x),Y € ’V}}/ Then

o (T ) = Uywj*_v: #ch(y)=2Ey -
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o (T ) = Uywj*_v: #ch(y)=2Ey -

GivenE € o (J; ), theset {b(E,X) : X € Joint"(E) } forms a basis
of E-eigenspace, where Joint" (E) is the collection of all the vertices
Y € (Vl*\7 with two children such that Pry) (E) =0,

b(E,Op) =p(E) and b(E,X):=p(E) ) vikiy,

with constants v; chosenso 7. b (E, X) at X is 0.
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Let Ey be the set of zeros of Pryy)(x),Y € ’V;(, Then

o (T ) = Uqu/I*Q: #ch(y)=2Ey -

GivenE € o (J; ), theset {b(E,X) : X € Joint"(E) } forms a basis
of E-eigenspace, where Joint" (E) is the collection of all the vertices
Y € (Vl*\7 with two children such that Pry) (E) =0,

b(E,Op) =p(E) and b(E,X):=p(E) ) vikiy,

with constants v; chosenso 7. b (E, X) at X is 0.

Totality of these vectors forms a basis for ¢ 2((‘/1\7 ).




Spectral Theorem

Let A be a bounded self-adjoint operator on a Hilbert space 7.
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There exists a resolution of identity £; such that A = ] "tdE;.
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Let A be a bounded self-adjoint operator on a Hilbert space 7.

Spectral Theorem (version I)

There exists a resolution of identity £; such that A = / "tdE;.

’
\.

Spectral Theorem (version II)

There exists a homomorphism @, that maps continuous functions into
bounded operators on 71 so that

Pa(D) =1, Pa®)=A, @a(f)=Pal(f)"s NPAU)] < If -

This homomorphism extends to bounded Borel functions.

®A(f) = / FOAE © Er=0a(xier).



Spectral Theorem

Given i € H, the spectral measure of / w.r.t. A is the unique measure 1, supported
on o (A), the spectrum of A, such that

<(A—z)‘1h,h> =/ d.uh,(X).

X =2




Spectral Theorem

Given i € H, the spectral measure of / w.r.t. A is the unique measure 1, supported
on o (A), the spectrum of A, such that

dup (x)
x-z

Spectral Theorem (version III)

Let (h,,) be an orthogonal family in # such that = € H,,, where H,, is the
cyclic subspace for A generated by /,,. There exist unitary operators

<(A—z)‘1h,h> =

Un:Hp = L2(n) 0 (UnApgg, h) (1) = t(Unh) (1), (Unhp) =1,

where 11, is the spectral measure of /,,. Moreover, o (A) = Usupp (1,,).

. J

To define U,,, set U,, p (A)h,, = p(t) for a polynomial p(7) and then use density.

LetU : H— P L% (j1,,) be the induced unitary operator. Then @4 (f) =U M fU,
where M is the multiplication by f () in each L% ().



Back to Orthogonal Polynomials

Let i« be a probability Borel measure supported on an interval [¢ — L, ¢ + L] and
(pn(x)), be the sequence of orthonormal polynomials:

[ P31 2n (AR (3) = G
Then it holds that
XPpn(x) = Van ppa1 (X) + bppn () + Van_1 pp-1(x),
where

0<Vas = [ pur0pa@dux) = [ (= pur () pa () du(x)

A

< L [ 1P @pnldu(o) <2
by orthogonality and Cauhcy-Schwarz inequality while

<max{|lc-L|,|c+L|}.

b | = ' / xp2 (x)dp(x)




Jacobi Operator

Boundedness of (a,,, b,,) means that

by ya 0 0 0

vag, b ya 0 0

g=| 0 va b vam 0
0 0 ya by a3

o o o o

is a bounded self-adjoint operator from ¢? (1) into itself. Moreover, the cyclic subspace
for J generated by 6 :=(100 -- ) is the whole space.



Spectral Measure

Let r,, (z) be the function of the second kind:

@ = [ 2290000 = [ (2) 228 ap,

Put r := (19,71, . ..). One can check that

[ (T -2)r(z) =60 ]

Since r(z) € ¢2(N) for all z large,
r2)=(J-27"69, ze¢a(D.

Therefore 4 is the spectral measure of 6" wr.t. 7 as

((T-2750,60) = [ B

X =2

Hence, o (J) =supp(u).



Unitary Map

Recall Jp(x) = xp(x), p(x) = (pn(x))n. The unitary map U : £2(N) — L?(p) is
explicitly defined via

a=U"'la:= / a(x)p(x)du(x)

ie, @={a(n)},, where @(n) = [ a(x)pn(x)du(x). As expected,

o= / AT rl) = / xe(x)p (x)dpu(x).



Unitary Map

Recall Jp(x) = xp(x), p(x) = (pn(x))n. The unitary map U : £2(N) — L?(p) is
explicitly defined via

a=U"'la:= / a(x)p(x)du(x)

ie, @={a(n)},, where @(n) = f a(x)pn(x)du(x). As expected,

i / AT rl) = / xe(x)p (x)dpu(x).

For orthogonal polynomials the following cyclic relation holds:

= (pn(xX)n = (an,bp)n — J — Hs0) =M.




Type I Multiple Orthogonal Polynomials

Let 411, p be compactly supported measures and 7i € N? be a multi-index. Type I
multiple orthogonal polynomials corresponding to 7i are defined by

/kuﬁ(x) =0, k=0,|i|-2,

where |7i| = n + np and the form O; (x) is given by

[ 0:(x) = AV (x)dpy (1) + AP ()i (x),  deg AV <n; - 1.

If the multi-index 7 is normal, Oj; (x) is unique up to multiplication by a constant and
is normalized so that f xi10L(x) = 1.



Type I Multiple Orthogonal Polynomials

Let 411, p be compactly supported measures and 7i € N? be a multi-index. Type I
multiple orthogonal polynomials corresponding to 7i are defined by

/kuﬁ(x) =0, k=0,|i|-2,

where |7i| = n + np and the form O; (x) is given by

[ 0:(x) = AV (x)dpy (1) + AP ()i (x),  deg AV <n; - 1. ]

If the multi-index 7 is normal, Oj; (x) is unique up to multiplication by a constant and
is normalized so that f xi10L(x) = 1.

It is known that

[ x05(x) = 055, (%) + bsi_g; ;05 (%) + 51 Qv (X) + a5 205ira, () ]

where the recurrence coefficients ;; ;. bj; ; are the same as for type II polynomials.



Homogeneous Rooted Tree

Let 7 be the rooted tree of all possible increasing paths on N? starting at (1, 1).

(1,1) ~ O = Y(P)

(231) "‘0(('/1),1 (],2) NYZO(('I:),Z

(3,1) (2,2) &(2,2) ~Y(cny 1 (1,3) ~Y(ch),2

We let V be the set of its vertices and IT : V — N2 be the natural projection and by
¢V — {1,2} the child function, i.e., oy =i iff TI(Y) = [1(Y(,,)) + &; (we also write
Y = Z('Iz,i/ Z = Y(/)))~



Jacobi Matrices on 7 corresponding to MOPs

Assume that

sup |aj; ;| <o and sup |bj ;| < co. ]

Define functions V, W and o by
Vo = r1b,1),1 + k2b1,02 and  Vy =bny,,,) .0y

where K = (kq, kp) is such that k| +kp = 1,

Wo =1 and Wy := ’aﬂ(Y“,)),ty , Y#O0,
and oy € {0, 1} is such that

ogo:=0 and (-1)YWy = an(y,).y> ¥ # 0.

Jacobi matrix J; on 7 corresponding to (11, o) is defined by

(Fef)y =V iy + Wyl/sz(m + Z (=1) TYem .1 w2

Y(ch).,1 fY(Ch)-l
1€{1,2}




Main Identity

Let Qj; (x) be the type I forms for (u1, po) and Lj (z) = /(z - x)’lQ;, (x). Set

Iy (2) =my'Ln) (), my =[] w;'?

Zepath(Y,0)

We further put L]”()(I”) (Z) = KILEZ(Z) + KzL(‘,] (Z) Then

(T~ 1(2) = ~Lio, ) (2)6'”

where 67 is the delta-function of ¥ on V.



Main Identity

Let Qj; (x) be the type I forms for (u1, po) and Lj (z) = /(z - x)’lQ;, (x). Set

— -1/2
ly (z) := myan(y)(z), my = n w, /

Zepath(Y,0)

We further put L”‘U(m) (2) = K1Lg,(2) + koL, (2). Then

(T~ 1(2) = ~Lio, ) (2)6'”

where 6 is the delta-function of ¥ on V. Moreover, also holds that

(Jix) - 2) lix) (2) = —mx Lnx,)) (2) 6%

where [ X | denotes the restriction to a subtree with root at X.



Boundedness Assumption

Theorem (A. Aptekarev, S. Denisov, and M.Y.)

Boundedness assumption is satisfied by Angelesco systems (1, 11):
A NAy =@, A;:=ch(supp ;).

Moreover, it holds that a;; ; > 0 for /i € N2,
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Boundedness Assumption

Theorem (A. Aptekarev, S. Denisov, and M.Y.)

Boundedness assumption is satisfied by Angelesco systems (1, 11):
A NAy =@, A;:=ch(supp ;).

Moreover, it holds that a;; ; > 0 for /i € N2,

Theorem (S. Denisov and M.Y.)

For a Nikishin system of Szegé measures it holds that

lim A(n,n+l),1 = =X and lim A(n,n+l),2 = .
n—oo n—oo

In the rest of this talk it is assumed that (y., u2) is an Angelesco system and
therefore the operator 7 is self-adjoint.




Green’s functions

Given X € Vand Y € V|x), the corresponding Green’s function is defined by

G(Y,X;z) = <(ﬂx] _ ) leX), 5(Y)>

The limit InG (X ,Y; x +i€) as € — 0" exists in the weak*-sense and we denote the
corresponding generally signed measure by ImG (Y, X)™.

Of course, p[x] = 7 1MmG (X, X)*, the spectral measure 5 restricted to Vix] wWrt.
Jix1 is positive.



Green’s functions

Given X € Vand Y € V|x), the corresponding Green’s function is defined by

G(Y,X;z) = <(~7[X] _ g1, 6(Y)>

The limit InG (X ,Y; x +i€) as € — 0" exists in the weak*-sense and we denote the
corresponding generally signed measure by ImG (Y, X)™.

Of course, p[x| = 7 1MmG (X, X)*, the spectral measure 5 restricted to Vx| wrt.
Jx], is positive.

Proposition

For all z ¢ Aj U A; it holds that

~mx L) ()
my Lix,,) (2)

G(Y,X;z) =




Green’s functions

Proposition (S. Denisov and M.Y.)

Measure p| x| has a semi-explicit expression.

It holds that
dImG (Y, X)* (x) = 7%y (X; x)dppx) (1),

for every Y € V|x |, where ¥ (X; x) is such that

Jix)¥(X;x) = x¥(X;x) and 5}(,X)=/‘Py(X;x)dp[XJ(x).




Trivial Cyclic Subspaces

Let €% be the cyclic subspace of £?(V|x|) generated by 6, that s,

€X) .= span{ [';(]6(’() in EZ+}.

Proposition (S. Denisov and M.Y.)

Fix X € V. The map
o) @ = (@ byauyy, - @y = [ a0y (Gx)dopx) (0.

is a unitary map from L?(p[x) onto €X). In particular, it holds that

“a||i2(p|x1> - ||5||§2(,le]) el G0 = {6: @< Lz(p[xl)}'
We also have that

xa(x) = Jix|@ «ac¢ Lz(plXJ).




Non-Trivial Cyclic Subspaces

Fix X € V and let X; = X(.p,).;, i € {1,2}. There exists measure px such that
doix; 1 (x) = vx; (x)dpx (x),
where it holds that (:;(1 <vx;(x) <cx,x € AfUAy. Let
By (X;x) = (1) Wy Wy (X5 %), ¥ € Vix),

and @y (X; x) := 0 otherwise. Define

€X) = { / a(x)¥(X;x)dpx (x): ae L2<ﬁx)}




Non-Trivial Cyclic Subspaces

Proposition (S. Denisov and M.Y.)

It holds that J-%P(X;x) = x¥(X; x). Let g;x) e €% e given by
ng) = (—1)iW§?2/@(X;x)dplxij(x).

Then, it holds that

e = span{j’?"gfx) tn €Z+}.

Furthermore, it holds that

2

dox.i(x) = Z

k=1

Wx; Vg(i (x)

Wx, vx; (x)

dpx (x),

where px ; is the spectral measure of g;X) with respect to 7.




Spectral Analysis

Theorem (S. Denisov and M.Y.)

A =cPr =FHe™.

XeV
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Theorem (S. Denisov and M.Y.)

A =cPr =FHe™.
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The set E; = {E : &1L, (E) + koL, (E) =0, E € R\ (Aj UAp)} is
either empty or has exactly one element in it. It is empty when « = ¢;,
i € {1,2}. It holds that

0'(3;2) CAUAU Ez.

If supp pur = Ay, k € {1,2}, then inclusion becomes equality.




Spectral Analysis

Theorem (S. Denisov and M.Y.)

A =cPr =FHe™.

XeV

The set E; = {E : &1L, (E) + koL, (E) =0, E € R\ (Aj UAp)} is
either empty or has exactly one element in it. It is empty when « = ¢;,
i € {1,2}. It holds that

0'(3;2) CAUAU Ez.

If supp pur = Ay, k € {1,2}, then inclusion becomes equality.

If dup(x) = pj (x)dx and (u})~! € L¥(Ag), k € {1,2}, then the
spectrum of J;, is purely absolutely continuous.




