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Padé Approximants

Let 𝐹 (𝑧) be a formal power series at infinity with no positive powers of 𝑧 and 𝑄𝑛 , 𝑃𝑛

be polynomials of degree at most 𝑛 defined by

(𝑃𝑛𝐹 −𝑄𝑛) (𝑧) = O
(
𝑧−𝑛−1

)
Such a pair of polynomials may not be unique, but their ratio always is. Indeed,

(𝑃∗
𝑛𝑄𝑛 − 𝑃𝑛𝑄

∗
𝑛) (𝑧) = 𝑃𝑛 (𝑧) (𝑃∗

𝑛𝐹 −𝑄∗
𝑛) (𝑧) − 𝑃∗

𝑛 (𝑧) (𝑃𝑛𝐹 −𝑄𝑛) (𝑧) = O
(
𝑧−1

)
which means that this difference must be identically zero. We let 𝑃𝑛 (𝑧) to be the monic
polynomial of smallest degree. The rational function (𝑄𝑛/𝑃𝑛) (𝑧) is called the diagonal
Padé approximant to 𝐹 (𝑧) of order 𝑛.

If the power series for 𝐹 (𝑧) is convergent and Γ encircles infinity within the disk of
convergence, then

0 =

∮
Γ

𝑧𝑘 (𝑃𝑛𝐹 −𝑄𝑛) (𝑧)d𝑧 =

∮
Γ

𝑧𝑘𝑃𝑛 (𝑧)𝐹 (𝑧)d𝑧

for 𝑘 = 0, 𝑛 − 1 and 𝑧 belonging to the exterior of Γ.
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Orthogonal Polynomials

In particular, if 𝜇 is a compactly supported measure on the real line, and

𝐹 (𝑧) =
∫

d𝜇 (𝑥)
𝑧 − 𝑥

is the Markov function of 𝜇, then

0 =

∮
Γ

𝑧𝑘𝑃𝑛 (𝑧)𝐹 (𝑧)d𝑧 =

∫ ∮
Γ

𝑧𝑘𝑃𝑛 (𝑧)
𝑧 − 𝑥

d𝑧d𝜇 (𝑥)

for 𝑘 = 0, 𝑛 − 1. Hence,

0 =

∫
𝑥𝑘𝑃𝑛 (𝑥)d𝜇 (𝑥) , 𝑘 = 0, 𝑛 − 1.

That is, 𝑃𝑛 (𝑥) is the 𝑛-th monic orthogonal polynomial w.r.t. 𝜇.



Orthogonal Polynomials

One can readily verified that up to normalization 𝑃𝑛 (𝑥) is equal to

det


𝜇0 𝜇1 · · · 𝜇𝑛
...

...
. . .

...

𝜇𝑛−1 𝜇𝑛 · · · 𝜇2𝑛

1 𝑥 · · · 𝑥𝑛


,

where 𝜇𝑘 :=
∫
𝑥𝑘d𝜇 (𝑥) . In particular, all the coefficients of 𝑃𝑛 (𝑥) are real.

Let Δ be the convex hull of the support 𝜇. Write 𝑃𝑛 (𝑥) = 𝑃 (𝑥)𝑄 (𝑥) , where all the
zeros of 𝑄 (𝑥) either do not lie on Δ or have even multiplicity (𝑄 (𝑥) ≡ 1 if there are no
such zeros). Then (𝑃𝑃𝑛) (𝑥) has constant sign on Δ. However, if deg 𝑃 < 𝑛, then∫

(𝑃𝑃𝑛) (𝑥)d𝜇 (𝑥) = 0,

which is impossible. Hence, 𝑃𝑛 (𝑥) has degree 𝑛 and all its zeros are simple and
contained in Δ.



Recurrence Relations

Since (𝑃𝑛 (𝑥))𝑛 is a complete sequence,

𝑥𝑃𝑛 (𝑥) = 𝑃𝑛+1 (𝑥) + 𝑐𝑛,𝑛𝑃𝑛 (𝑥) + . . . + 𝑐𝑛,0𝑃0 (𝑥) .
Observe that for each 𝑘 < 𝑛 − 1, it must hold that

𝑐𝑛,𝑘𝑚𝑘 =

∫
𝑥𝑃𝑘 (𝑥)𝑃𝑛 (𝑥)d𝜇 (𝑥) = 0,

where 𝑚𝑘 :=
∫
𝑃2
𝑘
(𝑥)d𝜇 (𝑥) . Hence, it holds that

𝑥𝑃𝑛 (𝑥) = 𝑃𝑛+1 (𝑥) + 𝑏𝑛𝑃𝑛 (𝑥) + 𝑎𝑛−1𝑃𝑛−1 (𝑥)

where 𝑃−1 := 0, 𝑃0 = 1, 𝑏𝑛 := 𝑐𝑛,𝑛 = 𝑚−1
𝑛

∫
𝑥𝑃2

𝑛 (𝑥)d𝜇 (𝑥) , and

𝑎𝑛−1 := 𝑐𝑛,𝑛−1 = 𝑚−1
𝑛−1

∫
𝑥𝑃𝑛−1 (𝑥)𝑃𝑛 (𝑥)d𝜇 (𝑥) = 𝑚𝑛/𝑚𝑛−1.

These three-term recurrence relations can be symmetrized:

𝑥𝑝𝑛 (𝑥) =
√
𝑎𝑛 𝑝𝑛+1 (𝑥) + 𝑏𝑛 𝑝𝑛 (𝑥) + √

𝑎𝑛−1𝑝𝑛−1 (𝑥) ,

where 𝑝𝑛 (𝑥) := (1/√𝑚𝑛)𝑃𝑛 (𝑥) is the 𝑛-th orthonormal polynomial.



Finite Jacobi Matrices

Let

J𝑛 :=

©­­­­­­­­­­­­«

𝑏0
√
𝑎0 0 0 0 · · · 0 0 0 0

√
𝑎0 𝑏1

√
𝑎1 0 0 · · · 0 0 0 0

0
√
𝑎1 𝑏2

√
𝑎2 0 · · · 0 0 0 0

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 · · · 0
√
𝑎𝑛−2 𝑏𝑛−1

√
𝑎𝑛−1

0 0 0 0 0 · · · 0 0
√
𝑎𝑛−1 𝑏𝑛

ª®®®®®®®®®®®®¬
.

Recurrence relations 𝑥𝑝𝑛 (𝑥) = √
𝑎𝑛 𝑝𝑛+1 (𝑥) + 𝑏𝑛 𝑝𝑛 (𝑥) + √

𝑎𝑛−1𝑝𝑛−1 (𝑥) imply that

J𝑛

©­­­­­­­­«

𝑝0 (𝑥)
𝑝1 (𝑥)

...

𝑝𝑛−1 (𝑥)
𝑝𝑛 (𝑥)

ª®®®®®®®®¬
= 𝑥

©­­­­­­­­«

𝑝0 (𝑥)
𝑝1 (𝑥)

...

𝑝𝑛−1 (𝑥)
𝑝𝑛 (𝑥)

ª®®®®®®®®¬
−

©­­­­­­­­«

0
0
...

0√
𝑎𝑛 𝑝𝑛+1 (𝑥)

ª®®®®®®®®¬
.

Hence, if J𝑛 is defined with some 𝑏𝑛 and 𝑎𝑛 > 0 while (𝑝𝑘 (𝑥))𝑛+1
𝑘=0 are defined via the

recurrence relations, then the eigenvalues of J𝑛 are precisely the zeros of 𝑝𝑛+1 (𝑥) and
the eigenvector corresponding to the eigenvalue 𝜆 is (𝑝0 (𝜆) 𝑝1 (𝜆) · · · 𝑝𝑛 (𝜆))T.



Hermite-Padé Approximants and Multiple Orthogonal Polynomials

Let 𝐹1 (𝑧) and 𝐹2 (𝑧) be two formal power series at infinity with no positive powers of
𝑧 and ®𝑛 = (𝑛1, 𝑛2) ∈ N2 be a multi-index. If there exist polynomials 𝑄 ®𝑛,𝑖 (𝑧) and 𝑃®𝑛 (𝑧)
of degrees at most | ®𝑛 | := 𝑛1 + 𝑛2 such that

(𝑃®𝑛𝐹𝑖 −𝑄 ®𝑛,𝑖) (𝑧) = O
(
𝑧−𝑛𝑖−1

)
then the pair of rational functions (𝑄 ®𝑛,1/𝑃®𝑛) (𝑧) and (𝑄 ®𝑛,2/𝑃®𝑛) (𝑧) is called type II
Hermite-Padé approximant to the pair of functions 𝐹1 (𝑧) and 𝐹2 (𝑧) .

If 𝜇1, 𝜇2 are compactly supported measures on the real line and 𝐹𝑖 (𝑧) =
∫

d𝜇𝑖 (𝑥)
𝑧 − 𝑥

,

then

0 =

∫
𝑥𝑘𝑃®𝑛 (𝑥)d𝜇𝑖 (𝑥) , 𝑘 = 0, 𝑛𝑖 − 1.

If 𝑃®𝑛 (𝑥) is unique up to normalization and deg(𝑃®𝑛) = | ®𝑛 |, then the multi-index ®𝑛 is
called normal. If every multi-index is normal, the system 𝜇1, 𝜇2 is called perfect.
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Hermite-Padé approximant to the pair of functions 𝐹1 (𝑧) and 𝐹2 (𝑧) .

If 𝜇1, 𝜇2 are compactly supported measures on the real line and 𝐹𝑖 (𝑧) =
∫

d𝜇𝑖 (𝑥)
𝑧 − 𝑥

,

then

0 =

∫
𝑥𝑘𝑃®𝑛 (𝑥)d𝜇𝑖 (𝑥) , 𝑘 = 0, 𝑛𝑖 − 1.

If 𝑃®𝑛 (𝑥) is unique up to normalization and deg(𝑃®𝑛) = | ®𝑛 |, then the multi-index ®𝑛 is
called normal. If every multi-index is normal, the system 𝜇1, 𝜇2 is called perfect.



Nearest Neighbor Recurrence Relations

Let ®𝑒1 = (1, 0) and ®𝑒2 = (0, 1) . Assume that ®𝑛 and ®𝑛 + ®𝑒𝑘 are normal. Then

𝑥𝑃®𝑛 (𝑥) − 𝑃®𝑛+®𝑒𝑘 (𝑥) − 𝑏 ®𝑛,𝑘𝑃®𝑛 (𝑥)

is a polynomial of degree at most | ®𝑛 | − 1 that is orthogonal to polynomials of degree at
most 𝑛𝑖 − 2 w.r.t. 𝜇𝑖 . Linear algebra and normality of ®𝑛 and ®𝑛 + ®𝑒𝑘 show that it must
belong to a 2D subspace and that this subspace is spanned by 𝑃®𝑛−®𝑒1

(𝑥) and 𝑃®𝑛−®𝑒2
(𝑥) .

That is,

𝑥𝑃®𝑛 (𝑥) = 𝑃®𝑛+®𝑒𝑘 (𝑥) + 𝑏 ®𝑛,𝑘𝑃®𝑛 (𝑥) + 𝑎 ®𝑛,1𝑃®𝑛−®𝑒1
(𝑥) + 𝑎 ®𝑛,2𝑃®𝑛−®𝑒2

(𝑥)

where

𝑎 ®𝑛,𝑖 =

∫
𝑥𝑛𝑖 𝑃®𝑛 (𝑥)d𝜇𝑖 (𝑥)∫

𝑥𝑛𝑖−1𝑃®𝑛−®𝑒𝑖 (𝑥)d𝜇𝑖 (𝑥)
.
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Consistency Conditions
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Consistency Conditions

Recurrence relations imply that %Æ=(G) can be build in many different ways:

This, in particular, means that the recurrence coefficients cannot be arbitrary. It can be
shown that they must satisfy

𝑏 ®𝑛+®𝑒1 ,2 − 𝑏 ®𝑛+®𝑒2 ,1 = 𝑏 ®𝑛,2 − 𝑏 ®𝑛,1,
2∑︁

𝑘=1

𝑎 ®𝑛+®𝑒 𝑗 ,𝑘
−

2∑︁
𝑘=1

𝑎 ®𝑛+®𝑒𝑖 ,𝑘 = 𝑏 ®𝑛+®𝑒 𝑗 ,𝑖
𝑏 ®𝑛, 𝑗 − 𝑏 ®𝑛+®𝑒𝑖 , 𝑗𝑏 ®𝑛,𝑖 ,

𝑎 ®𝑛,𝑖 (𝑏 ®𝑛, 𝑗 − 𝑏 ®𝑛,𝑖) = 𝑎 ®𝑛+®𝑒 𝑗 ,𝑖
(𝑏 ®𝑛−®𝑒𝑖 , 𝑗 − 𝑏 ®𝑛−®𝑒𝑖 ,𝑖) .



Jacobi Operators on a Lattice

Recurrence relations

𝑥𝑃®𝑛 (𝑥) = 𝑃®𝑛+®𝑒𝑘 (𝑥) + 𝑏 ®𝑛,𝑘𝑃®𝑛 (𝑥) + 𝑎 ®𝑛,1𝑃®𝑛−®𝑒1
(𝑥) + 𝑎 ®𝑛,2𝑃®𝑛−®𝑒2

(𝑥)

naturally lead to two Jacobi operators on the lattice N2:

(J𝑘 𝑓 ) ®𝑛 := 𝑓®𝑛+®𝑒𝑘 + 𝑏 ®𝑛,𝑘 𝑓®𝑛 + 𝑎 ®𝑛,1 𝑓®𝑛−®𝑒1
+ 𝑎 ®𝑛,2 𝑓®𝑛−®𝑒2

where 𝑓 is a function on N2 (we call it a Jacobi operator because only the values of 𝑓 at
the nearest neighbors of ®𝑛 are used to compute the valueJ𝑘 𝑓 at ®𝑛). Notice that

J𝑘𝑃 (𝑥) = 𝑥𝑃 (𝑥) ,

where 𝑃 (𝑥) = (𝑃®𝑛 (𝑥)) ®𝑛. Aptekarev, Derevyagin, and Van Assche investigated these
operators and showed that to symmetrize their average:

(J 𝑓 ) ®𝑛 :=
1
2
𝑓®𝑛+®𝑒1

+ 1
2
𝑓®𝑛+®𝑒2

+ 1
2
(𝑏 ®𝑛,1 + 𝑏 ®𝑛,2) 𝑓®𝑛 + 𝑎 ®𝑛,1 𝑓®𝑛−®𝑒1

+ 𝑎 ®𝑛,2 𝑓®𝑛−®𝑒2

one needs to additionally require

𝑏 ®𝑛+®𝑒1 ,1 − 𝑏 ®𝑛+®𝑒1 ,2 = 𝑏 ®𝑛+®𝑒2 ,1 − 𝑏 ®𝑛+®𝑒2 ,2.

Besides the average, they could have also considered J𝜅 := 𝜅J1 + (1 − 𝜅) J2.



Finite Trees

Fix ®𝑁 = (𝑁1, 𝑁2) ∈ N2 and untwine all paths within connecting ®𝑁 and (0, 0) within
{ ®𝑛 : 𝑛1 ≤ 𝑁1, 𝑛2 ≤ 𝑁2 } into a tree T®𝑁 with the set of vertices V ®𝑁 .

(2, 1) ∼ 𝑂

(1, 1) ∼ 𝑋(𝑝) = 𝑌(𝑝) (2, 0) ∼ 𝑍(𝑝)

(0, 1) ∼ 𝑋 = 𝐴(𝑝) (1, 0) ∼ 𝑌 = 𝐵(𝑝) (1, 0) ∼ 𝑍 = 𝐶(𝑝)

(0, 0) ∼ 𝐴 = 𝑋(𝑐ℎ) ,2 (0, 0) ∼ 𝐵 = 𝑌(𝑐ℎ) ,1 (0, 0) ∼ 𝐶 = 𝑍(𝑐ℎ) ,1

We denote by Π : V ®𝑁 → N2 the natural projection and by 𝜄 : V ®𝑁 → {1, 2} the child
function, i.e., 𝜄𝑌 = 𝑖 iff Π(𝑌(𝑝) ) = Π(𝑌 ) + ®𝑒𝑖 (we also write 𝑌 = 𝑍𝑐ℎ,𝑖 , 𝑍 = 𝑌(𝑝) ).



Jacobi Matrices on T®𝑁 corresponding to MOPs

Define functions 𝑉 , 𝑊 and 𝜎 by

𝑉𝑂 := 𝜅1𝑏 ®𝑁,1 + 𝜅2𝑏 ®𝑁,2 and 𝑉𝑌 := 𝑏Π(𝑌 ) , 𝜄𝑌 ,

where ®𝜅 = (𝜅1, 𝜅2) is such that 𝜅1 + 𝜅2 = 1,

𝑊𝑂 := 1 and 𝑊𝑌 :=
���𝑎Π(𝑌(𝑝) ) , 𝜄𝑌

��� , 𝑌 ≠ 𝑂,

and 𝜎𝑌 ∈ {0, 1} is such that

𝜎𝑂 := 0 and (−1)𝜎𝑌 𝑊𝑌 = 𝑎Π(𝑌(𝑝) ) , 𝜄𝑌 , 𝑌 ≠ 𝑂.

Jacobi matrix J®𝜅, ®𝑁 on T®𝑁 corresponding to (𝜇1, 𝜇2) is defined by

(J®𝜅, ®𝑁 𝑓 )𝑌 := 𝑉𝑌 𝑓𝑌 +𝑊
1/2
𝑌 𝑓𝑌(𝑝) +

∑︁
𝑙∈𝑐ℎ (𝑌 )

(−1)𝜎𝑌(𝑐ℎ) ,𝑙 𝑊 1/2
𝑌(𝑐ℎ) ,𝑙

𝑓𝑌(𝑐ℎ) ,𝑙

If 𝜎 ≡ 0, this operator is self-adjoint, and, in general, it is 𝔖-self-adjoint with respect to
an indefinite inner product that depends on 𝜎.



Main Identity

Set

𝑝𝑌 (𝑧) := 𝑚−1
𝑌 𝑃Π(𝑌 ) (𝑧) , 𝑚𝑌 :=

∏
𝑍∈path(𝑌 ,𝑂)

𝑊
−1/2
𝑍

If 𝑌 ≠ 𝑂, Π(𝑌 ) = ®𝑛, and 𝜄𝑌 = 𝑘, then(
J®𝜅, ®𝑁 𝑝 (𝑥)

)
𝑌

= 𝑉𝑌 𝑝𝑌 (𝑥) +𝑊
1/2
𝑌 𝑝𝑌(𝑝) (𝑥) +

∑︁
(−1)𝜎𝑌(𝑐ℎ) ,𝑙 𝑊 1/2

𝑌(𝑐ℎ) ,𝑙
𝑝𝑌(𝑐ℎ) ,𝑙 (𝑥)

=
1
𝑚𝑌

(
𝑉𝑌 𝑃𝑌 (𝑥) + 𝑃𝑌(𝑝) (𝑥) +

∑︁
(−1)𝜎𝑌(𝑐ℎ) ,𝑙 𝑊𝑌(𝑐ℎ) ,𝑙 𝑃𝑌(𝑐ℎ) ,𝑙 (𝑥)

)
=

1
𝑚𝑌

(
𝑏 ®𝑛,𝑘𝑃®𝑛 (𝑥) + 𝑃®𝑛+®𝑒𝑘 (𝑥) +

∑︁
𝑎 ®𝑛,𝑖𝑃®𝑛−®𝑒𝑖 (𝑥)

)
= 𝑥𝑝𝑌 (𝑥) .

Similarly, if we set 𝑃Π(𝑂(𝑝) ) (𝑧) := 𝜅1𝑃 ®𝑁+®𝑒1
(𝑧) + 𝜅2𝑃 ®𝑁+®𝑒2

(𝑧) , then(
J®𝜅, ®𝑁 𝑝 (𝑥)

)
𝑂

=
1

𝑚𝑂

(
𝑉𝑂𝑃𝑂 (𝑥) +

∑︁
(−1)𝜎𝑂(𝑐ℎ) ,𝑙 𝑊𝑂(𝑐ℎ) ,𝑙 𝑃𝑂(𝑐ℎ) ,𝑙 (𝑥)

)
=

1
𝑚𝑂

(
(𝜅1𝑏 ®𝑁,1 + 𝜅2𝑏 ®𝑁,2)𝑃 ®𝑁 (𝑥) +

∑︁
𝑎 ®𝑁,𝑖

𝑃 ®𝑁−®𝑒𝑖 (𝑥)
)

= 𝑥𝑝𝑂 (𝑥) − 1
𝑚𝑂

𝑃Π(𝑂(𝑝) ) (𝑥) .



Main Identity

Let 𝑍 ∈ V ®𝑁 be a vertex with two children, 𝑍1 and 𝑍2. Denote by 𝑏𝑖 (𝑥) the function
that is equal to the restriction of 𝑝 (𝑥) to the subtree with the root at 𝑍𝑖 and to zero
everywhere else. Then (

J®𝜅, ®𝑁 𝑏𝑖 (𝑥)
)
𝑍𝑖

= 𝑥𝑝𝑍𝑖 (𝑥) −𝑊
1/2
𝑍𝑖

𝑝𝑍 (𝑥)

and (
J®𝜅, ®𝑁 𝑏𝑖 (𝑥)

)
𝑍
= (−1)𝜎𝑍𝑖 𝑊

1/2
𝑍𝑖

𝑝𝑍𝑖 (𝑥) .

Hence, one can take a linear concatenation 𝑏 (𝑥) = 𝜐1𝑏1 (𝑥) + 𝜐2𝑏2 (𝑥) such that(
J®𝜅, ®𝑁 𝑏 (𝑥)

)
𝑍𝑖

= 𝑥𝑏𝑍𝑖 (𝑥) − 𝜐𝑖𝑊
1/2
𝑍𝑖

𝑝𝑍 (𝑥)

and (
J®𝜅, ®𝑁 𝑏 (𝑥)

)
𝑍
= 0 = 𝑥𝑏𝑍 (𝑥)

(here its is important that 𝑍 has two and not one child).



Assumptions

Denote by 𝐸𝑌 the set of zeros of 𝑃Π(𝑌 ) (𝑥) , 𝑌 ∈ V∗
®𝑁 := V ®𝑁 ∪ {𝑂(𝑝) }. We assume that

𝐸𝑌 ⊂ R, #𝐸𝑌 = |Π(𝑌 ) |, 𝑌 ∈ V∗
®𝑁 ,

𝐸𝑌 ∩ 𝐸𝑌(𝑝) = ∅, 𝑌 ∈ V ®𝑁 .

These conditions are satisfied by multiple Hermite polynomials, multiple Laguerre
polynomials of the second kind, multiple Charlier polynomials, multiple Meixner
polynomials of the first kind (WVA), and Angelesco systems. Moreover, in all these
examples 𝑎 ®𝑛,𝑖 > 0, ®𝑛 ∈ N.

They are also satisfied by multiple Laguerre polynomials of the first kind,
Jacobi-Piñeiro polynomials, and multiple Meixner polynomials of the second kind
(WVA), and Nikishin systems, but with coefficients 𝑎 ®𝑛,𝑖 changing sign.



Main Theorem

Theorem (S. Denisov and M.Y.)

Let 𝐸𝑌 be the set of zeros of 𝑃Π(𝑌 ) (𝑥) , 𝑌 ∈ V∗
®𝑁 . Then

𝜎 (J®𝜅, ®𝑁 ) = ∪𝑌 ∈V∗
®𝑁 : #𝑐ℎ (𝑌 )=2𝐸𝑌 .

Given 𝐸 ∈ 𝜎 (J®𝜅, ®𝑁 ) , the set {𝑏 (𝐸, 𝑋 ) : 𝑋 ∈ Joint∗ (𝐸) } forms a basis
of 𝐸-eigenspace, where Joint∗ (𝐸) is the collection of all the vertices
𝑌 ∈ V∗

®𝑁 with two children such that 𝑃Π(𝑌 ) (𝐸) = 0,

𝑏 (𝐸, 𝑂(𝑝) ) := 𝑝 (𝐸) and 𝑏 (𝐸, 𝑋 ) := 𝑝 (𝐸)
∑︁

𝜐𝑖𝜒|T[𝑋(𝑐ℎ) ,𝑖 ]

with constants 𝜐𝑖 chosen so J®𝜅, ®𝑁 𝑏 (𝐸, 𝑋 ) at 𝑋 is 0.

Totality of these vectors forms a basis for ℓ2 (V ®𝑁 ) .
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Spectral Theorem

Let 𝐴 be a bounded self-adjoint operator on a Hilbert space H.

Spectral Theorem (version I)

There exists a resolution of identity 𝐸𝑡 such that 𝐴 =
∫
𝑡d𝐸𝑡 .

Spectral Theorem (version II)

There exists a homomorphism Φ𝐴 that maps continuous functions into
bounded operators on H so that

Φ𝐴 (1) = 𝐼 , Φ𝐴 (𝑡) = 𝐴, Φ𝐴 ( 𝑓 ) = Φ𝐴 ( 𝑓 )∗, ‖Φ𝐴 ( 𝑓 ) ‖ ≤ ‖ 𝑓 ‖∞.

This homomorphism extends to bounded Borel functions.

Φ𝐴 ( 𝑓 ) =
∫

𝑓 (𝑡)d𝐸𝑡 ⇔ 𝐸𝑡 = Φ𝐴 (𝜒(−∞,𝑡 ] ) .
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Spectral Theorem

Given ℎ ∈ H, the spectral measure of ℎ w.r.t. 𝐴 is the unique measure 𝜇ℎ , supported
on 𝜎 (𝐴) , the spectrum of 𝐴, such that〈

(𝐴− 𝑧)−1ℎ, ℎ
〉
=

∫
𝑑𝜇ℎ (𝑥)
𝑥 − 𝑧

.

Spectral Theorem (version III)

Let (ℎ𝑛) be an orthogonal family in H such that H =
⊕H𝑛, where H𝑛 is the

cyclic subspace for 𝐴 generated by ℎ𝑛. There exist unitary operators

𝑈𝑛 : H𝑛 → 𝐿2 (𝜇𝑛) : (𝑈𝑛𝐴|H𝑛ℎ) (𝑡) = 𝑡 (𝑈𝑛ℎ) (𝑡) , (𝑈𝑛ℎ𝑛) ≡ 1,

where 𝜇𝑛 is the spectral measure of ℎ𝑛. Moreover, 𝜎 (𝐴) = ∪supp(𝜇𝑛) .

To define 𝑈𝑛, set 𝑈𝑛 𝑝 (𝐴)ℎ𝑛 = 𝑝 (𝑡) for a polynomial 𝑝 (𝑡) and then use density.

Let 𝑈 : H → ⊕
𝐿2 (𝜇𝑛) be the induced unitary operator. Then Φ𝐴 ( 𝑓 ) =𝑈−1𝑀 𝑓 𝑈 ,

where 𝑀 𝑓 is the multiplication by 𝑓 (𝑡) in each 𝐿2 (𝜇𝑛) .
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Back to Orthogonal Polynomials

Let 𝜇 be a probability Borel measure supported on an interval [𝑐 − 𝐿, 𝑐 + 𝐿 ] and
(𝑝𝑛 (𝑥))𝑛 be the sequence of orthonormal polynomials:∫

𝑝𝑚 (𝑥) 𝑝𝑛 (𝑥)d𝜇 (𝑥) = 𝛿𝑚𝑛.

Then it holds that

𝑥𝑝𝑛 (𝑥) =
√
𝑎𝑛 𝑝𝑛+1 (𝑥) + 𝑏𝑛 𝑝𝑛 (𝑥) + √

𝑎𝑛−1𝑝𝑛−1 (𝑥) ,

where

0 <
√
𝑎𝑛−1 =

∫
𝑥𝑝𝑛−1 (𝑥) 𝑝𝑛 (𝑥)d𝜇 (𝑥) =

∫
(𝑥 − 𝑐) 𝑝𝑛−1 (𝑥) 𝑝𝑛 (𝑥)d𝜇 (𝑥)

≤ 𝐿

∫
|𝑝𝑛−1 (𝑥) 𝑝𝑛 (𝑥) |d𝜇 (𝑥) ≤ 𝐿

by orthogonality and Cauhcy-Schwarz inequality while

|𝑏𝑛 | =
����∫ 𝑥𝑝2

𝑛 (𝑥)d𝜇 (𝑥)
���� ≤ max { |𝑐 − 𝐿 |, |𝑐 + 𝐿 | } .



Jacobi Operator

Boundedness of (𝑎𝑛 , 𝑏𝑛) means that

J :=

©­­­­­­­­­«

𝑏0
√
𝑎0 0 0 0 0 · · ·

√
𝑎0 𝑏1

√
𝑎1 0 0 0 · · ·

0
√
𝑎1 𝑏2

√
𝑎2 0 0 · · ·

0 0
√
𝑎2 𝑏3

√
𝑎3 0 · · ·

...
...

...
...

...
...

. . .

ª®®®®®®®®®¬
is a bounded self-adjoint operator from ℓ2 (N) into itself. Moreover, the cyclic subspace
for J generated by 𝛿 (0) := (1 0 0 · · · ) is the whole space.



Spectral Measure

Let 𝑟𝑛 (𝑧) be the function of the second kind:

𝑟𝑛 (𝑧) :=
∫

𝑝𝑛 (𝑥)
𝑥 − 𝑧

d𝜇 (𝑥) =
∫ (

𝑥

𝑧

)𝑛 𝑝𝑛 (𝑥)
𝑥 − 𝑧

d𝜇 (𝑥) .

Put 𝑟 := (𝑟0, 𝑟1, . . .) . One can check that

(J − 𝑧)𝑟 (𝑧) = 𝛿 (0)

Since 𝑟 (𝑧) ∈ ℓ2 (N) for all 𝑧 large,

𝑟 (𝑧) = (J − 𝑧)−1 𝛿 (0) , 𝑧 ∉ 𝜎 (J) .

Therefore 𝜇 is the spectral measure of 𝛿 (0) wr.t. J as

〈
(J − 𝑧)−1 𝛿 (0) , 𝛿 (0)

〉
=

∫
d𝜇 (𝑥)
𝑥 − 𝑧

Hence, 𝜎 (J) = supp(𝜇) .



Unitary Map

Recall J𝑝 (𝑥) = 𝑥𝑝 (𝑥) , 𝑝 (𝑥) = (𝑝𝑛 (𝑥))𝑛. The unitary map 𝑈 : ℓ2 (N) → 𝐿2 (𝜇) is
explicitly defined via

𝛼 =𝑈−1𝛼 :=
∫

𝛼(𝑥) 𝑝 (𝑥)d𝜇 (𝑥)

i.e., 𝛼 = {𝛼(𝑛) }𝑛, where 𝛼(𝑛) :=
∫
𝛼(𝑥) 𝑝𝑛 (𝑥)d𝜇 (𝑥) . As expected,

J𝛼 =

∫
𝛼(𝑥) J𝑝 (𝑥)d𝜇 (𝑥) =

∫
𝑥𝛼(𝑥) 𝑝 (𝑥)d𝜇 (𝑥) .

For orthogonal polynomials the following cyclic relation holds:

𝜇 → (𝑝𝑛 (𝑥))𝑛 → (𝑎𝑛 , 𝑏𝑛)𝑛 → J → 𝜇𝛿 (0) = 𝜇.
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Type I Multiple Orthogonal Polynomials

Let 𝜇1, 𝜇2 be compactly supported measures and ®𝑛 ∈ N2 be a multi-index. Type I
multiple orthogonal polynomials corresponding to ®𝑛 are defined by

∫
𝑥𝑘𝑄 ®𝑛 (𝑥) = 0, 𝑘 = 0, | ®𝑛 | − 2,

where | ®𝑛 | = 𝑛1 + 𝑛2 and the form 𝑄 ®𝑛 (𝑥) is given by

𝑄 ®𝑛 (𝑥) := 𝐴
(1)
®𝑛 (𝑥)d𝜇1 (𝑥) + 𝐴

(2)
®𝑛 (𝑥)d𝜇2 (𝑥) , deg 𝐴

(𝑖)
®𝑛 ≤ 𝑛𝑖 − 1.

If the multi-index ®𝑛 is normal, 𝑄 ®𝑛 (𝑥) is unique up to multiplication by a constant and
is normalized so that

∫
𝑥 | ®𝑛|−1𝑄 ®𝑛 (𝑥) = 1.

It is known that

𝑥𝑄 ®𝑛 (𝑥) = 𝑄 ®𝑛−®𝑒𝑖 (𝑥) + 𝑏 ®𝑛−®𝑒𝑖 ,𝑖𝑄 ®𝑛 (𝑥) + 𝑎 ®𝑛,1𝑄 ®𝑛+®𝑒1
(𝑥) + 𝑎 ®𝑛,2𝑄 ®𝑛+®𝑒2

(𝑥)

where the recurrence coefficients 𝑎 ®𝑛,𝑖 , 𝑏 ®𝑛,𝑖 are the same as for type II polynomials.



Type I Multiple Orthogonal Polynomials
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(𝑖)
®𝑛 ≤ 𝑛𝑖 − 1.
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Homogeneous Rooted Tree

Let T be the rooted tree of all possible increasing paths on N2 starting at (1, 1) .

(1, 1) ∼ 𝑂 = 𝑌(𝑝)

(2, 1) ∼ 𝑂(𝑐ℎ) ,1 (1, 2) ∼ 𝑌 = 𝑂(𝑐ℎ) ,2

(3, 1) (2, 2) (2, 2) ∼ 𝑌(𝑐ℎ) ,1 (1, 3) ∼ 𝑌(𝑐ℎ) ,2

We let V be the set of its vertices and Π : V → N2 be the natural projection and by
𝜄 : V → {1, 2} the child function, i.e., 𝜄𝑌 = 𝑖 iff Π(𝑌 ) = Π(𝑌(𝑝) ) + ®𝑒𝑖 (we also write
𝑌 = 𝑍𝑐ℎ,𝑖 , 𝑍 = 𝑌(𝑝) ).



Jacobi Matrices on T corresponding to MOPs

Assume that

sup |𝑎 ®𝑛,𝑖 | < ∞ and sup |𝑏 ®𝑛,𝑖 | < ∞ .

Define functions 𝑉 , 𝑊 and 𝜎 by

𝑉𝑂 := 𝜅1𝑏(0,1) ,1 + 𝜅2𝑏(1,0) ,2 and 𝑉𝑌 := 𝑏Π(𝑌(𝑝) ) , 𝜄𝑌 ,

where ®𝜅 = (𝜅1, 𝜅2) is such that 𝜅1 + 𝜅2 = 1,

𝑊𝑂 := 1 and 𝑊𝑌 :=
���𝑎Π(𝑌(𝑝) ) , 𝜄𝑌

��� , 𝑌 ≠ 𝑂,

and 𝜎𝑌 ∈ {0, 1} is such that

𝜎𝑂 := 0 and (−1)𝜎𝑌 𝑊𝑌 = 𝑎Π(𝑌(𝑝) ) , 𝜄𝑌 , 𝑌 ≠ 𝑂.

Jacobi matrix J®𝜅 on T corresponding to (𝜇1, 𝜇2) is defined by

(J®𝜅 𝑓 )𝑌 := 𝑉𝑌 𝑓𝑌 +𝑊
1/2
𝑌 𝑓𝑌(𝑝) +

∑︁
𝑙∈{1,2}

(−1)𝜎𝑌(𝑐ℎ) ,𝑙 𝑊 1/2
𝑌(𝑐ℎ) ,𝑙

𝑓𝑌(𝑐ℎ) ,𝑙



Main Identity

Let 𝑄 ®𝑛 (𝑥) be the type I forms for (𝜇1, 𝜇2) and 𝐿 ®𝑛 (𝑧) :=
∫
(𝑧 − 𝑥)−1𝑄 ®𝑛 (𝑥) . Set

𝑙𝑌 (𝑧) := 𝑚−1
𝑌 𝐿Π(𝑌 ) (𝑧) , 𝑚𝑌 :=

∏
𝑍∈path(𝑌 ,𝑂)

𝑊
−1/2
𝑍

We further put 𝐿Π(𝑂(𝑝) ) (𝑧) := 𝜅1𝐿 ®𝑒2
(𝑧) + 𝜅2𝐿 ®𝑒1

(𝑧) . Then

(J®𝜅 − 𝑧) 𝑙 (𝑧) = −𝐿Π(𝑂(𝑝) ) (𝑧) 𝛿 (𝑂)

where 𝛿 (𝑌 ) is the delta-function of 𝑌 on V.

Moreover, also holds that

(J[𝑋 ] − 𝑧
)
𝑙[𝑋 ] (𝑧) = −𝑚−1

𝑋 𝐿Π(𝑋(𝑝) ) (𝑧) 𝛿 (𝑋 )

where [𝑋 ] denotes the restriction to a subtree with root at 𝑋 .
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Boundedness Assumption

Theorem (A. Aptekarev, S. Denisov, and M.Y.)

Boundedness assumption is satisfied by Angelesco systems (𝜇1, 𝜇2) :

Δ1 ∩ Δ2 = ∅, Δ𝑖 := ch(supp 𝜇𝑖) .

Moreover, it holds that 𝑎 ®𝑛,𝑖 > 0 for ®𝑛 ∈ N2.

Theorem (S. Denisov and M.Y.)

For a Nikishin system of Szegő measures it holds that

lim
𝑛→∞ 𝑎(𝑛,𝑛+1) ,1 = −∞ and lim

𝑛→∞ 𝑎(𝑛,𝑛+1) ,2 = ∞.

In the rest of this talk it is assumed that (𝜇1, 𝜇2) is an Angelesco system and
therefore the operator J®𝜅 is self-adjoint.
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Green’s functions

Given 𝑋 ∈ V and 𝑌 ∈ V[𝑋 ] , the corresponding Green’s function is defined by

𝐺 (𝑌 , 𝑋 ; 𝑧) :=
〈
(J[𝑋 ] − 𝑧)−1 𝛿 (𝑋 ) , 𝛿 (𝑌 )

〉
The limit Im𝐺 (𝑋,𝑌 ; 𝑥 + i𝜖 ) as 𝜖 → 0+ exists in the weak∗-sense and we denote the
corresponding generally signed measure by Im𝐺 (𝑌 , 𝑋 )+.

Of course, 𝜌[𝑋 ] = 𝜋−1Im𝐺 (𝑋, 𝑋 )+, the spectral measure 𝛿 (𝑋 ) restricted to V[𝑋 ] w.r.t.
J[𝑋 ] , is positive.

Proposition

For all 𝑧 ∉ Δ1 ∪ Δ2 it holds that

𝐺 (𝑌 , 𝑋 ; 𝑧) = −𝑚𝑋

𝑚𝑌

𝐿Π(𝑌 ) (𝑧)
𝐿Π(𝑋(𝑝) ) (𝑧)

.
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Green’s functions

Proposition (S. Denisov and M.Y.)

Measure 𝜌[𝑋 ] has a semi-explicit expression.

It holds that

dIm𝐺 (𝑌 , 𝑋 )+ (𝑥) = 𝜋Ψ𝑌 (𝑋 ; 𝑥)d𝜌[𝑋 ] (𝑥) ,

for every 𝑌 ∈ V[𝑋 ] , where Ψ(𝑋 ; 𝑥) is such that

J[𝑋 ]Ψ(𝑋 ; 𝑥) = 𝑥Ψ(𝑋 ; 𝑥) and 𝛿
(𝑋 )
𝑌 =

∫
Ψ𝑌 (𝑋 ; 𝑥)d𝜌[𝑋 ] (𝑥) .



Trivial Cyclic Subspaces

Let ℭ(𝑋 ) be the cyclic subspace of ℓ2 (V[𝑋 ] ) generated by 𝛿 (𝑋 ) , that is,

ℭ(𝑋 ) := span
{
J𝑛
[𝑋 ] 𝛿

(𝑋 ) : 𝑛 ∈ Z+
}
.

Proposition (S. Denisov and M.Y.)

Fix 𝑋 ∈ V. The map

𝛼(𝑥) ↦→ 𝛼 = {𝛼𝑌 }𝑌 ∈V[𝑋 ] , 𝛼𝑌 :=
∫

𝛼(𝑥)Ψ𝑌 (𝑋 ; 𝑥)d𝜌[𝑋 ] (𝑥) ,

is a unitary map from 𝐿2 (𝜌[𝑋 ] ) onto ℭ(𝑋 ) . In particular, it holds that

‖𝛼 ‖2
𝐿2 (𝜌[𝑋 ] )

= ‖𝛼 ‖2
ℓ2 (V[𝑋 ] )

and ℭ(𝑋 ) =
{
𝛼 : 𝛼 ∈ 𝐿2 (𝜌[𝑋 ] )

}
.

We also have that

𝑥𝛼(𝑥) ↦→ J[𝑋 ]𝛼, 𝛼 ∈ 𝐿2 (𝜌[𝑋 ] ) .



Non-Trivial Cyclic Subspaces

Fix 𝑋 ∈ V and let 𝑋𝑖 = 𝑋(𝑐ℎ) ,𝑖 , 𝑖 ∈ {1, 2}. There exists measure 𝜌𝑋 such that

d𝜌[𝑋𝑖 ] (𝑥) = 𝜈𝑋𝑖 (𝑥)d𝜌𝑋 (𝑥) ,

where it holds that 𝑐−1
𝑋 ≤ 𝜈𝑋𝑖 (𝑥) ≤ 𝑐𝑋 , 𝑥 ∈ Δ1 ∪ Δ2. Let

Ψ̂𝑌 (𝑋 ; 𝑥) := (−1)𝑖𝑊 −1/2
𝑋𝑖

Ψ𝑌 (𝑋𝑖 ; 𝑥) , 𝑌 ∈ V[𝑋𝑖 ] ,

and Ψ̂𝑌 (𝑋 ; 𝑥) := 0 otherwise. Define

ℭ̂(𝑋 ) :=
{∫

𝛼(𝑥)Ψ̂(𝑋 ; 𝑥)d𝜌𝑋 (𝑥) : 𝛼 ∈ 𝐿2 (𝜌𝑋 )
}



Non-Trivial Cyclic Subspaces

Proposition (S. Denisov and M.Y.)

It holds that J®𝜅 Ψ̂(𝑋 ; 𝑥) = 𝑥Ψ̂(𝑋 ; 𝑥) . Let 𝑔 (𝑋 )
𝑖 ∈ ℭ̂(𝑋 ) be given by

𝑔
(𝑋 )
𝑖 := (−1)𝑖𝑊 1/2

𝑋𝑖

∫
Ψ̂(𝑋 ; 𝑥)d𝜌[𝑋𝑖 ] (𝑥) .

Then, it holds that

ℭ̂(𝑋 ) = span
{
J𝑛
®𝜅 𝑔

(𝑋 )
𝑖 : 𝑛 ∈ Z+

}
.

Furthermore, it holds that

d𝜌𝑋,𝑖 (𝑥) =
2∑︁

𝑘=1

𝑊𝑋𝑖

𝑊𝑋𝑘

𝜈2
𝑋𝑖

(𝑥)
𝜈𝑋𝑘

(𝑥) d𝜌𝑋 (𝑥) ,

where 𝜌𝑋,𝑖 is the spectral measure of 𝑔 (𝑋 )
𝑖 with respect to J®𝜅 .



Spectral Analysis

Theorem (S. Denisov and M.Y.)

ℓ2 (V) = ℭ(𝑂) ⊕ L, L =
⊕
𝑋∈V

ℭ̂(𝑋 ) .

The set 𝐸®𝜅 := {𝐸 : 𝜅1𝐿 ®𝑒2
(𝐸) + 𝜅2𝐿 ®𝑒1

(𝐸) = 0, 𝐸 ∈ R \ (Δ1 ∪ Δ2) } is
either empty or has exactly one element in it. It is empty when ®𝜅 = ®𝑒𝑖 ,
𝑖 ∈ {1, 2}. It holds that

𝜎 (J®𝜅 ) ⊆ Δ1 ∪ Δ2 ∪ 𝐸®𝜅 .

If supp 𝜇𝑘 = Δ𝑘 , 𝑘 ∈ {1, 2}, then inclusion becomes equality.

If 𝑑𝜇𝑘 (𝑥) = 𝜇′𝑘 (𝑥)d𝑥 and (𝜇′𝑘 )−1 ∈ 𝐿∞ (Δ𝑘 ) , 𝑘 ∈ {1, 2}, then the
spectrum of J®𝑒𝑖 is purely absolutely continuous.
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