Spectral theory of Jacobi matrices on trees whose coefficients are generated by multiple orthogonality

Maxim L. Yattselev

IUPUI
SCHOOL OF SCIENCE
Department of Mathematical Sciences

Jacobi Operators and Spectral Theory
Universidade de São Paulo, São Carlos
May 27th, 2022

This talk is mostly based on
S. Denisov and M.Y., Spectral theory of Jacobi matrices on trees whose coefficients are generated by multiple orthogonality, Adv. Math., 2022
which is a third paper in a sequence
A. Aptekarev, S. Denisov, and M.Y., Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum, J. Spectr. Theory, 2021
A. Aptekarev, S. Denisov, and M.Y., Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials, Trans. Amer. Math. Soc., 2020

Padé Approximants

Let $F(z)$ be a formal power series at infinity with no positive powers of z and Q_{n}, P_{n} be polynomials of degree at most n defined by

$$
\left(P_{n} F-Q_{n}\right)(z)=O\left(z^{-n-1}\right)
$$

Such a pair of polynomials may not be unique, but their ratio always is. Indeed,

$$
\left(P_{n}^{*} Q_{n}-P_{n} Q_{n}^{*}\right)(z)=P_{n}(z)\left(P_{n}^{*} F-Q_{n}^{*}\right)(z)-P_{n}^{*}(z)\left(P_{n} F-Q_{n}\right)(z)=O\left(z^{-1}\right)
$$

which means that this difference must be identically zero. We let $P_{n}(z)$ to be the monic polynomial of smallest degree. The rational function $\left(Q_{n} / P_{n}\right)(z)$ is called the diagonal Padé approximant to $F(z)$ of order n.

Let $F(z)$ be a formal power series at infinity with no positive powers of z and Q_{n}, P_{n} be polynomials of degree at most n defined by

$$
\left(P_{n} F-Q_{n}\right)(z)=O\left(z^{-n-1}\right)
$$

Such a pair of polynomials may not be unique, but their ratio always is. Indeed,

$$
\left(P_{n}^{*} Q_{n}-P_{n} Q_{n}^{*}\right)(z)=P_{n}(z)\left(P_{n}^{*} F-Q_{n}^{*}\right)(z)-P_{n}^{*}(z)\left(P_{n} F-Q_{n}\right)(z)=O\left(z^{-1}\right)
$$

which means that this difference must be identically zero. We let $P_{n}(z)$ to be the monic polynomial of smallest degree. The rational function $\left(Q_{n} / P_{n}\right)(z)$ is called the diagonal Padé approximant to $F(z)$ of order n.

If the power series for $F(z)$ is convergent and Γ encircles infinity within the disk of convergence, then

$$
0=\oint_{\Gamma} z^{k}\left(P_{n} F-Q_{n}\right)(z) \mathrm{d} z=\oint_{\Gamma} z^{k} P_{n}(z) F(z) \mathrm{d} z
$$

for $k=\overline{0, n-1}$ and z belonging to the exterior of Γ.

Orthogonal Polynomials

In particular, if μ is a compactly supported measure on the real line, and

$$
F(z)=\int \frac{\mathrm{d} \mu(x)}{z-x}
$$

is the Markov function of μ, then

$$
0=\oint_{\Gamma} z^{k} P_{n}(z) F(z) \mathrm{d} z=\int \oint_{\Gamma} \frac{z^{k} P_{n}(z)}{z-x} \mathrm{~d} z \mathrm{~d} \mu(x)
$$

for $k=\overline{0, n-1}$. Hence,

$$
0=\int x^{k} P_{n}(x) \mathrm{d} \mu(x), \quad k=\overline{0, n-1} .
$$

That is, $P_{n}(x)$ is the n-th monic orthogonal polynomial w.r.t. μ.

Orthogonal Polynomials

One can readily verified that up to normalization $P_{n}(x)$ is equal to

$$
\operatorname{det}\left[\begin{array}{cccc}
\mu_{0} & \mu_{1} & \cdots & \mu_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{n-1} & \mu_{n} & \cdots & \mu_{2 n} \\
1 & x & \cdots & x^{n}
\end{array}\right]
$$

where $\mu_{k}:=\int x^{k} \mathrm{~d} \mu(x)$. In particular, all the coefficients of $P_{n}(x)$ are real.
Let Δ be the convex hull of the support μ. Write $P_{n}(x)=P(x) Q(x)$, where all the zeros of $Q(x)$ either do not lie on Δ or have even multiplicity $(Q(x) \equiv 1$ if there are no such zeros). Then $\left(P P_{n}\right)(x)$ has constant sign on Δ. However, if $\operatorname{deg} P<n$, then

$$
\int\left(P P_{n}\right)(x) \mathrm{d} \mu(x)=0
$$

which is impossible. Hence, $P_{n}(x)$ has degree n and all its zeros are simple and contained in Δ.

Since $\left(P_{n}(x)\right)_{n}$ is a complete sequence,

$$
x P_{n}(x)=P_{n+1}(x)+c_{n, n} P_{n}(x)+\ldots+c_{n, 0} P_{0}(x) .
$$

Observe that for each $k<n-1$, it must hold that

$$
c_{n, k} m_{k}=\int x P_{k}(x) P_{n}(x) \mathrm{d} \mu(x)=0
$$

where $m_{k}:=\int P_{k}^{2}(x) \mathrm{d} \mu(x)$. Hence, it holds that

$$
x P_{n}(x)=P_{n+1}(x)+b_{n} P_{n}(x)+a_{n-1} P_{n-1}(x)
$$

where $P_{-1}:=0, P_{0}=1, b_{n}:=c_{n, n}=m_{n}^{-1} \int x P_{n}^{2}(x) \mathrm{d} \mu(x)$, and

$$
a_{n-1}:=c_{n, n-1}=m_{n-1}^{-1} \int x P_{n-1}(x) P_{n}(x) \mathrm{d} \mu(x)=m_{n} / m_{n-1} .
$$

These three-term recurrence relations can be symmetrized:

$$
x p_{n}(x)=\sqrt{a_{n}} p_{n+1}(x)+b_{n} p_{n}(x)+\sqrt{a_{n-1}} p_{n-1}(x)
$$

where $p_{n}(x):=\left(1 / \sqrt{m_{n}}\right) P_{n}(x)$ is the n-th orthonormal polynomial.

Finite Jacobi Matrices

Let

$$
\mathcal{J}_{n}:=\left(\begin{array}{cccccccccc}
b_{0} & \sqrt{a_{0}} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\sqrt{a_{0}} & b_{1} & \sqrt{a_{1}} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \sqrt{a_{1}} & b_{2} & \sqrt{a_{2}} & 0 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & \sqrt{a_{n-2}} & b_{n-1} & \sqrt{a_{n-1}} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \sqrt{a_{n-1}} & b_{n}
\end{array}\right) .
$$

Recurrence relations $x p_{n}(x)=\sqrt{a_{n}} p_{n+1}(x)+b_{n} p_{n}(x)+\sqrt{a_{n-1}} p_{n-1}(x)$ imply that

$$
\mathcal{J}_{n}\left(\begin{array}{c}
p_{0}(x) \\
p_{1}(x) \\
\vdots \\
p_{n-1}(x) \\
p_{n}(x)
\end{array}\right)=x\left(\begin{array}{c}
p_{0}(x) \\
p_{1}(x) \\
\vdots \\
p_{n-1}(x) \\
p_{n}(x)
\end{array}\right)-\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\sqrt{a_{n}} p_{n+1}(x)
\end{array}\right) .
$$

Hence, if \mathcal{J}_{n} is defined with some b_{n} and $a_{n}>0$ while $\left(p_{k}(x)\right)_{k=0}^{n+1}$ are defined via the recurrence relations, then the eigenvalues of \mathcal{J}_{n} are precisely the zeros of $p_{n+1}(x)$ and the eigenvector corresponding to the eigenvalue λ is $\left(p_{0}(\lambda) p_{1}(\lambda) \cdots p_{n}(\lambda)\right)^{\top}$.

Hermite-Padé Approximants and Multiple Orthogonal Polynomials

Let $F_{1}(z)$ and $F_{2}(z)$ be two formal power series at infinity with no positive powers of z and $\vec{n}=\left(n_{1}, n_{2}\right) \in \mathbb{N}^{2}$ be a multi-index. If there exist polynomials $Q_{\vec{n}, i}(z)$ and $P_{\vec{n}}(z)$ of degrees at most $|\vec{n}|:=n_{1}+n_{2}$ such that

$$
\left(P_{\vec{n}} F_{i}-Q_{\vec{n}, i}\right)(z)=O\left(z^{-n_{i}-1}\right)
$$

then the pair of rational functions $\left(Q_{\vec{n}, 1} / P_{\vec{n}}\right)(z)$ and $\left(Q_{\vec{n}, 2} / P_{\vec{n}}\right)(z)$ is called type II Hermite-Pade approximant to the pair of functions $F_{1}(z)$ and $F_{2}(z)$.

Hermite-Padé Approximants and Multiple Orthogonal Polynomials

Let $F_{1}(z)$ and $F_{2}(z)$ be two formal power series at infinity with no positive powers of z and $\vec{n}=\left(n_{1}, n_{2}\right) \in \mathbb{N}^{2}$ be a multi-index. If there exist polynomials $Q_{\vec{n}, i}(z)$ and $P_{\vec{n}}(z)$ of degrees at most $|\vec{n}|:=n_{1}+n_{2}$ such that

$$
\left(P_{\vec{n}} F_{i}-Q_{\vec{n}, i}\right)(z)=O\left(z^{-n_{i}-1}\right)
$$

then the pair of rational functions $\left(Q_{\vec{n}, 1} / P_{\vec{n}}\right)(z)$ and $\left(Q_{\vec{n}, 2} / P_{\vec{n}}\right)(z)$ is called type II Hermite-Pade approximant to the pair of functions $F_{1}(z)$ and $F_{2}(z)$.

If μ_{1}, μ_{2} are compactly supported measures on the real line and $F_{i}(z)=\int \frac{\mathrm{d} \mu_{i}(x)}{z-x}$, then

$$
0=\int x^{k} P_{\vec{n}}(x) \mathrm{d} \mu_{i}(x), \quad k=\overline{0, n_{i}-1} .
$$

If $P_{\vec{n}}(x)$ is unique up to normalization and $\operatorname{deg}\left(P_{\vec{n}}\right)=|\vec{n}|$, then the multi-index \vec{n} is called normal. If every multi-index is normal, the system μ_{1}, μ_{2} is called perfect.

Nearest Neighbor Recurrence Relations

Let $\vec{e}_{1}=(1,0)$ and $\vec{e}_{2}=(0,1)$. Assume that \vec{n} and $\vec{n}+\vec{e}_{k}$ are normal. Then

$$
x P_{\vec{n}}(x)-P_{\vec{n}+\vec{e}_{k}}(x)-b_{\vec{n}, k} P_{\vec{n}}(x)
$$

is a polynomial of degree at most $|\vec{n}|-1$ that is orthogonal to polynomials of degree at most $n_{i}-2$ w.r.t. μ_{i}. Linear algebra and normality of \vec{n} and $\vec{n}+\vec{e}_{k}$ show that it must belong to a 2D subspace and that this subspace is spanned by $P_{\vec{n}-\vec{e}_{1}}(x)$ and $P_{\vec{n}-\vec{e}_{2}}(x)$.

Nearest Neighbor Recurrence Relations

Let $\vec{e}_{1}=(1,0)$ and $\vec{e}_{2}=(0,1)$. Assume that \vec{n} and $\vec{n}+\vec{e}_{k}$ are normal. Then

$$
x P_{\vec{n}}(x)-P_{\vec{n}+\vec{e}_{k}}(x)-b_{\vec{n}, k} P_{\vec{n}}(x)
$$

is a polynomial of degree at most $|\vec{n}|-1$ that is orthogonal to polynomials of degree at most $n_{i}-2$ w.r.t. μ_{i}. Linear algebra and normality of \vec{n} and $\vec{n}+\vec{e}_{k}$ show that it must belong to a 2D subspace and that this subspace is spanned by $P_{\vec{n}-\vec{e}_{1}}(x)$ and $P_{\vec{n}-\vec{e}_{2}}(x)$.

That is,

$$
x P_{\vec{n}}(x)=P_{\vec{n}+\vec{e}_{k}}(x)+b_{\vec{n}, k} P_{\vec{n}}(x)+a_{\vec{n}, 1} P_{\vec{n}-\vec{e}_{1}}(x)+a_{\vec{n}, 2} P_{\vec{n}-\vec{e}_{2}}(x)
$$

where

$$
a_{\vec{n}, i}=\frac{\int x^{n_{i}} P_{\vec{n}}(x) \mathrm{d} \mu_{i}(x)}{\int x^{n_{i}-1} P_{\vec{n}-\vec{e}_{i}}(x) \mathrm{d} \mu_{i}(x)} .
$$

Recurrence relations imply that $P_{\vec{n}}(x)$ can be build in many different ways:

This, in particular, means that the recurrence coefficients cannot be arbitrary. It can be shown that they must satisfy

$$
\begin{array}{r}
b_{\vec{n}+\vec{e}_{1}, 2}-b_{\vec{n}+\vec{e}_{2}, 1}=b_{\vec{n}, 2}-b_{\vec{n}, 1}, \\
\sum_{k=1}^{2} a_{\vec{n}+\vec{e}_{j}, k}-\sum_{k=1}^{2} a_{\vec{n}+\vec{e}_{i}, k}=b_{\vec{n}+\vec{e}_{j}, i} b_{\vec{n}, j}-b_{\vec{n}+\vec{e}_{i}, j} b_{\vec{n}, i}, \\
a_{\vec{n}, i}\left(b_{\vec{n}, j}-b_{\vec{n}, i}\right)=a_{\vec{n}+\vec{e}_{j}, i}\left(b_{\vec{n}-\vec{e}_{i}, j}-b_{\vec{n}-\vec{e}_{i}, i}\right) .
\end{array}
$$

Jacobi Operators on a Lattice

Recurrence relations

$$
x P_{\vec{n}}(x)=P_{\vec{n}+\vec{e}_{k}}(x)+b_{\vec{n}, k} P_{\vec{n}}(x)+a_{\vec{n}, 1} P_{\vec{n}-\vec{e}_{1}}(x)+a_{\vec{n}, 2} P_{\vec{n}-\vec{e}_{2}}(x)
$$

naturally lead to two Jacobi operators on the lattice \mathbb{N}^{2} :

$$
\left(\mathcal{J}_{k} f\right)_{\vec{n}}:=f_{\vec{n}+\vec{e}_{k}}+b_{\vec{n}, k} f_{\vec{n}}+a_{\vec{n}, 1} f_{\vec{n}-\vec{e}_{1}}+a_{\vec{n}, 2} f_{\vec{n}-\vec{e}_{2}}
$$

where f is a function on \mathbb{N}^{2} (we call it a Jacobi operator because only the values of f at the nearest neighbors of \vec{n} are used to compute the value $\mathcal{J}_{k} f$ at \vec{n}). Notice that

$$
\mathcal{J}_{k} P(x)=x P(x),
$$

where $P(x)=\left(P_{\vec{n}}(x)\right)_{\vec{n}}$. Aptekarev, Derevyagin, and Van Assche investigated these operators and showed that to symmetrize their average:

$$
(\mathcal{J} f)_{\vec{n}}:=\frac{1}{2} f_{\vec{n}+\vec{e}_{1}}+\frac{1}{2} f_{\vec{n}+\vec{e}_{2}}+\frac{1}{2}\left(b_{\vec{n}, 1}+b_{\vec{n}, 2}\right) f_{\vec{n}}+a_{\vec{n}, 1} f_{\vec{n}-\vec{e}_{1}}+a_{\vec{n}, 2} f_{\vec{n}-\vec{e}_{2}}
$$

one needs to additionally require

$$
b_{\vec{n}+\vec{e}_{1}, 1}-b_{\vec{n}+\vec{e}_{1}, 2}=b_{\vec{n}+\vec{e}_{2}, 1}-b_{\vec{n}+\vec{e}_{2}, 2} .
$$

Besides the average, they could have also considered $\mathcal{J}_{\kappa}:=\kappa \mathcal{J}_{1}+(1-\kappa) \mathcal{J}_{2}$.

Fix $\vec{N}=\left(N_{1}, N_{2}\right) \in \mathbb{N}^{2}$ and untwine all paths within connecting \vec{N} and $(0,0)$ within $\left\{\vec{n}: n_{1} \leq N_{1}, n_{2} \leq N_{2}\right\}$ into a tree $\mathcal{T}_{\vec{N}}$ with the set of vertices $\mathcal{V}_{\vec{N}}$.

We denote by $\Pi: \mathcal{V}_{\vec{N}} \rightarrow \mathbb{N}^{2}$ the natural projection and by $\iota: \mathcal{V}_{\vec{N}} \rightarrow\{1,2\}$ the child function, i.e., $\iota_{Y}=i$ iff $\Pi\left(Y_{(p)}\right)=\Pi(Y)+\vec{e}_{i}$ (we also write $Y=Z_{C h, i}, Z=Y_{(p)}$).

Jacobi Matrices on $\mathcal{T}_{\vec{N}}$ corresponding to MOPs

Define functions V, W and σ by

$$
V_{O}:=\kappa_{1} b_{\vec{N}, 1}+\kappa_{2} b_{\vec{N}, 2} \quad \text { and } \quad V_{Y}:=b_{\Pi(Y), \iota_{Y}},
$$

where $\vec{\kappa}=\left(\kappa_{1}, \kappa_{2}\right)$ is such that $\kappa_{1}+\kappa_{2}=1$,

$$
W_{O}:=1 \quad \text { and } \quad W_{Y}:=\left|a_{\Pi\left(Y_{(p)}\right), \iota_{Y}}\right|, \quad Y \neq O \text {, }
$$

and $\sigma_{Y} \in\{0,1\}$ is such that

$$
\sigma_{O}:=0 \quad \text { and } \quad(-1)^{\sigma_{Y}} W_{Y}=a_{\Pi\left(Y_{(p)}\right), \iota_{Y}}, \quad Y \neq O
$$

Jacobi matrix $\mathcal{J}_{\vec{\kappa}, \vec{N}}$ on $\mathcal{T}_{\vec{N}}$ corresponding to $\left(\mu_{1}, \mu_{2}\right)$ is defined by

$$
\left(\mathcal{J}_{\vec{\kappa}, \vec{N}} f\right)_{Y}:=V_{Y} f_{Y}+W_{Y}^{1 / 2} f_{Y_{(p)}}+\sum_{l \in c h(Y)}(-1)^{\sigma_{Y(c h), l}} W_{Y_{(c h), l}}^{1 / 2} f_{Y_{(c h), l}}
$$

If $\sigma \equiv 0$, this operator is self-adjoint, and, in general, it is \subseteq-self-adjoint with respect to an indefinite inner product that depends on σ.

Set

$$
p_{Y}(z):=m_{Y}^{-1} P_{\Pi(Y)}(z), \quad m_{Y}:=\prod_{Z \in \operatorname{path}(Y, O)} W_{Z}^{-1 / 2}
$$

If $Y \neq O, \Pi(Y)=\vec{n}$, and $\iota_{Y}=k$, then

$$
\begin{aligned}
\left(\mathcal{J}_{\vec{\kappa}, \vec{N}} p(x)\right)_{Y} & =V_{Y} p_{Y}(x)+W_{Y}^{1 / 2} p_{Y_{(p)}}(x)+\sum(-1)^{\sigma_{Y_{(c h), l}}} W_{Y_{(c h), l}^{1 / 2}} p_{Y_{(c h), l}}(x) \\
& =\frac{1}{m_{Y}}\left(V_{Y} P_{Y}(x)+P_{Y_{(p)}}(x)+\sum(-1)^{\left.\sigma_{Y_{(c h), l}} W_{Y_{(c h), l}} P_{Y_{(c h), l}}(x)\right)}\right. \\
& =\frac{1}{m_{Y}}\left(b_{\vec{n}, k} P_{\vec{n}}(x)+P_{\vec{n}+\vec{e}_{k}}(x)+\sum a_{\vec{n}, i} P_{\vec{n}-\vec{e}_{i}}(x)\right)=x p_{Y}(x) .
\end{aligned}
$$

Similarly, if we set $P_{\Pi\left(O_{(p)}\right)}(z):=\kappa_{1} P_{\vec{N}+\vec{e}_{1}}(z)+\kappa_{2} P_{\vec{N}+\vec{e}_{2}}(z)$, then

$$
\begin{aligned}
\left(\mathcal{J}_{\vec{\kappa}, \vec{N}} p(x)\right)_{O} & =\frac{1}{m_{O}}\left(V_{O} P_{O}(x)+\sum(-1){ }^{\left.\sigma_{O_{(c h), l}} W_{O_{(c h), l}} P_{O_{(c h), l}}(x)\right)}\right. \\
& =\frac{1}{m}\left(\left(\kappa_{1} b_{\vec{N}, 1}+\kappa_{2} b_{\vec{N}, 2}\right) P_{\vec{N}}(x)+\sum a_{\vec{N}, i} P_{\vec{N}-\vec{e}_{i}}(x)\right) \\
& =x p_{O}(x)-\frac{1}{m_{O}} P_{\Pi\left(O_{(p)}\right)}(x) .
\end{aligned}
$$

Let $Z \in \mathcal{V}_{\vec{N}}$ be a vertex with two children, Z_{1} and Z_{2}. Denote by $b_{i}(x)$ the function that is equal to the restriction of $p(x)$ to the subtree with the root at Z_{i} and to zero everywhere else. Then

$$
\left(\mathcal{J}_{\vec{\kappa}, \vec{N}} b_{i}(x)\right)_{Z_{i}}=x p_{Z_{i}}(x)-W_{Z_{i}}^{1 / 2} p_{Z}(x)
$$

and

$$
\left(\mathcal{J}_{\vec{\kappa}, \vec{N}} b_{i}(x)\right)_{Z}=(-1)^{\sigma_{Z^{i}}} W_{Z_{i}}^{1 / 2} p_{Z_{i}}(x) .
$$

Hence, one can take a linear concatenation $b(x)=v_{1} b_{1}(x)+v_{2} b_{2}(x)$ such that

$$
\left(\mathcal{J}_{\vec{\kappa}, \vec{N}} b(x)\right)_{Z_{i}}=x b_{Z_{i}}(x)-v_{i} W_{Z_{i}}^{1 / 2} p_{Z}(x)
$$

and

$$
\left(\mathcal{J}_{\vec{\kappa}, \vec{N}} b(x)\right)_{Z}=0=x b_{Z}(x)
$$

(here its is important that Z has two and not one child).

Denote by E_{Y} the set of zeros of $P_{\Pi(Y)}(x), Y \in \mathcal{V}_{\vec{N}}^{*}:=\mathcal{V}_{\vec{N}} \cup\left\{O_{(p)}\right\}$. We assume that

$$
\begin{aligned}
E_{Y} \subset \mathbb{R}, & \# E_{Y}=|\Pi(Y)|,
\end{aligned} \quad Y \in \mathcal{V}_{\vec{N}}^{*}, ~\left(\begin{array}{l}
\\
E_{Y} \cap E_{Y_{(p)}}=\varnothing, \quad Y \in \mathcal{V}_{\vec{N}} .
\end{array}\right.
$$

These conditions are satisfied by multiple Hermite polynomials, multiple Laguerre polynomials of the second kind, multiple Charlier polynomials, multiple Meixner polynomials of the first kind (WVA), and Angelesco systems. Moreover, in all these examples $a_{\vec{n}, i}>0, \vec{n} \in \mathbb{N}$.

They are also satisfied by multiple Laguerre polynomials of the first kind, Jacobi-Piñeiro polynomials, and multiple Meixner polynomials of the second kind (WVA), and Nikishin systems, but with coefficients $a_{\vec{n}, i}$ changing sign.

Theorem (S. Denisov and M.Y.)

Let E_{Y} be the set of zeros of $P_{\Pi(Y)}(x), Y \in \mathcal{V}_{\vec{N}}^{*}$. Then

$$
\sigma\left(\mathcal{J}_{\vec{\kappa}, \vec{N}}\right)=\cup_{Y \in \mathcal{V}_{\vec{N}}^{*}: \# c h(Y)=2} E_{Y} .
$$

Theorem (S. Denisov and M.Y.)

Let E_{Y} be the set of zeros of $P_{\Pi(Y)}(x), Y \in \mathcal{V}_{\vec{N}}^{*}$. Then

$$
\sigma\left(\mathcal{J}_{\vec{\kappa}, \vec{N}}\right)=\cup_{Y \in \mathcal{V}_{\vec{N}}^{*}: \# c h(Y)=2} E_{Y} .
$$

Given $E \in \sigma\left(\mathcal{J}_{\vec{K}, \vec{N}}\right)$, the set $\left\{b(E, X): X \in\right.$ Joint $\left.^{*}(E)\right\}$ forms a basis of E-eigenspace, where Joint (E) is the collection of all the vertices $Y \in \mathcal{V}_{\vec{N}}^{*}$ with two children such that $P_{\Pi(Y)}(E)=0$,

$$
b\left(E, O_{(p)}\right):=p(E) \quad \text { and } \quad b(E, X):=p(E) \sum v_{i \chi_{\mid \mathcal{T}_{\left[X_{(c h), i}\right]}}}
$$

with constants v_{i} chosen so $\mathcal{J}_{\vec{\kappa}, \vec{N}} b(E, X)$ at X is 0 .

Theorem (S. Denisov and M.Y.)

Let E_{Y} be the set of zeros of $P_{\Pi(Y)}(x), Y \in \mathcal{V}_{\vec{N}}^{*}$. Then

$$
\sigma\left(\mathcal{J}_{\vec{\kappa}, \vec{N}}\right)=\cup_{Y \in \mathcal{V}_{\vec{N}}^{*}: \# c h(Y)=2} E_{Y} .
$$

Given $E \in \sigma\left(\mathcal{J}_{\vec{\kappa}, \vec{N}}\right)$, the set $\left\{b(E, X): X \in\right.$ Joint $\left.^{*}(E)\right\}$ forms a basis of E-eigenspace, where Joint (E) is the collection of all the vertices $Y \in \mathcal{V}_{\vec{N}}^{*}$ with two children such that $P_{\Pi(Y)}(E)=0$,

$$
b\left(E, O_{(p)}\right):=p(E) \quad \text { and } \quad b(E, X):=p(E) \sum v_{i \chi_{\mid \mathcal{T}_{\left[X_{(c h), i}\right]}}}
$$

with constants v_{i} chosen so $\mathcal{J}_{\vec{\kappa}, \vec{N}} b(E, X)$ at X is 0 .

Totality of these vectors forms a basis for $\ell^{2}\left(\mathcal{V}_{\vec{N}}\right)$.

Let A be a bounded self-adjoint operator on a Hilbert space \mathcal{H}.
Spectral Theorem (version I)
There exists a resolution of identity E_{t} such that $A=\int t \mathrm{~d} E_{t}$.

Let A be a bounded self-adjoint operator on a Hilbert space \mathcal{H}.

Spectral Theorem (version I)

There exists a resolution of identity E_{t} such that $A=\int t \mathrm{~d} E_{t}$.

Spectral Theorem (version II)

There exists a homomorphism Φ_{A} that maps continuous functions into bounded operators on \mathcal{H} so that

$$
\Phi_{A}(1)=I, \quad \Phi_{A}(t)=A, \quad \Phi_{A}(\bar{f})=\Phi_{A}(f)^{*}, \quad\left\|\Phi_{A}(f)\right\| \leq\|f\|_{\infty} .
$$

This homomorphism extends to bounded Borel functions.

$$
\Phi_{A}(f)=\int f(t) \mathrm{d} E_{t} \quad \Leftrightarrow \quad E_{t}=\Phi_{A}\left(\chi_{(-\infty, t]}\right) .
$$

Spectral Theorem

Given $h \in \mathcal{H}$, the spectral measure of h w.r.t. A is the unique measure μ_{h}, supported on $\sigma(A)$, the spectrum of A, such that

$$
\left\langle(A-z)^{-1} h, h\right\rangle=\int \frac{d \mu_{h}(x)}{x-z} .
$$

Given $h \in \mathcal{H}$, the spectral measure of h w.r.t. A is the unique measure μ_{h}, supported on $\sigma(A)$, the spectrum of A, such that

$$
\left\langle(A-z)^{-1} h, h\right\rangle=\int \frac{d \mu_{h}(x)}{x-z} .
$$

Spectral Theorem (version III)

Let $\left(h_{n}\right)$ be an orthogonal family in \mathcal{H} such that $\mathcal{H}=\bigoplus \mathcal{H}_{n}$, where \mathcal{H}_{n} is the cyclic subspace for A generated by h_{n}. There exist unitary operators

$$
U_{n}: \mathcal{H}_{n} \rightarrow L^{2}\left(\mu_{n}\right): \quad\left(U_{n} A_{\mid \mathcal{H}_{n}} h\right)(t)=t\left(U_{n} h\right)(t), \quad\left(U_{n} h_{n}\right) \equiv 1,
$$

where μ_{n} is the spectral measure of h_{n}. Moreover, $\sigma(A)=\overline{\operatorname{Usupp}\left(\mu_{n}\right)}$.

To define U_{n}, set $U_{n} p(A) h_{n}=p(t)$ for a polynomial $p(t)$ and then use density.
Let $U: \mathcal{H} \rightarrow \bigoplus L^{2}\left(\mu_{n}\right)$ be the induced unitary operator. Then $\Phi_{A}(f)=U^{-1} M_{f} U$, where M_{f} is the multiplication by $f(t)$ in each $L^{2}\left(\mu_{n}\right)$.

Back to Orthogonal Polynomials

Let μ be a probability Borel measure supported on an interval $[c-L, c+L]$ and ($\left.p_{n}(x)\right)_{n}$ be the sequence of orthonormal polynomials:

$$
\int p_{m}(x) p_{n}(x) \mathrm{d} \mu(x)=\delta_{m n}
$$

Then it holds that

$$
x p_{n}(x)=\sqrt{a_{n}} p_{n+1}(x)+b_{n} p_{n}(x)+\sqrt{a_{n-1}} p_{n-1}(x)
$$

where

$$
\begin{aligned}
0<\sqrt{a_{n-1}} & =\int x p_{n-1}(x) p_{n}(x) \mathrm{d} \mu(x)=\int(x-c) p_{n-1}(x) p_{n}(x) \mathrm{d} \mu(x) \\
& \leq L \int\left|p_{n-1}(x) p_{n}(x)\right| \mathrm{d} \mu(x) \leq L
\end{aligned}
$$

by orthogonality and Cauhcy-Schwarz inequality while

$$
\left|b_{n}\right|=\left|\int x p_{n}^{2}(x) \mathrm{d} \mu(x)\right| \leq \max \{|c-L|,|c+L|\}
$$

Boundedness of $\left(a_{n}, b_{n}\right)$ means that

$$
\mathcal{J}:=\left(\begin{array}{ccccccc}
b_{0} & \sqrt{a_{0}} & 0 & 0 & 0 & 0 & \cdots \\
\sqrt{a_{0}} & b_{1} & \sqrt{a_{1}} & 0 & 0 & 0 & \cdots \\
0 & \sqrt{a_{1}} & b_{2} & \sqrt{a_{2}} & 0 & 0 & \cdots \\
0 & 0 & \sqrt{a_{2}} & b_{3} & \sqrt{a_{3}} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is a bounded self-adjoint operator from $\ell^{2}(\mathbb{N})$ into itself. Moreover, the cyclic subspace for \mathcal{J} generated by $\delta^{(0)}:=(100 \cdots)$ is the whole space.

Spectral Measure

Let $r_{n}(z)$ be the function of the second kind:

$$
r_{n}(z):=\int \frac{p_{n}(x)}{x-z} \mathrm{~d} \mu(x)=\int\left(\frac{x}{z}\right)^{n} \frac{p_{n}(x)}{x-z} \mathrm{~d} \mu(x) .
$$

Put $r:=\left(r_{0}, r_{1}, \ldots\right)$. One can check that

$$
(\mathcal{J}-z) r(z)=\delta^{(0)}
$$

Since $r(z) \in \ell^{2}(\mathbb{N})$ for all z large,

$$
r(z)=(\mathcal{J}-z)^{-1} \delta^{(0)}, \quad z \notin \sigma(\mathcal{J}) .
$$

Therefore μ is the spectral measure of $\delta^{(0)}$ wr.t. \mathcal{J} as

$$
\left\langle(\mathcal{J}-z)^{-1} \delta^{(0)}, \delta^{(0)}\right\rangle=\int \frac{\mathrm{d} \mu(x)}{x-z}
$$

Hence, $\sigma(\mathcal{T})=\operatorname{supp}(\mu)$.

Recall $\mathcal{J} p(x)=x p(x), p(x)=\left(p_{n}(x)\right)_{n}$. The unitary map $U: \ell^{2}(\mathbb{N}) \rightarrow L^{2}(\mu)$ is explicitly defined via

$$
\widehat{\alpha}=U^{-1} \alpha:=\int \alpha(x) p(x) \mathrm{d} \mu(x)
$$

i.e., $\widehat{\alpha}=\{\widehat{\alpha}(n)\}_{n}$, where $\widehat{\alpha}(n):=\int \alpha(x) p_{n}(x) \mathrm{d} \mu(x)$. As expected,

$$
\mathcal{J} \widehat{\alpha}=\int \alpha(x) \mathcal{J} p(x) \mathrm{d} \mu(x)=\int x \alpha(x) p(x) \mathrm{d} \mu(x) .
$$

Recall $\mathcal{J} p(x)=x p(x), p(x)=\left(p_{n}(x)\right)_{n}$. The unitary map $U: \ell^{2}(\mathbb{N}) \rightarrow L^{2}(\mu)$ is explicitly defined via

$$
\widehat{\alpha}=U^{-1} \alpha:=\int \alpha(x) p(x) \mathrm{d} \mu(x)
$$

i.e., $\widehat{\alpha}=\{\widehat{\alpha}(n)\}_{n}$, where $\widehat{\alpha}(n):=\int \alpha(x) p_{n}(x) \mathrm{d} \mu(x)$. As expected,

$$
\mathcal{J} \widehat{\alpha}=\int \alpha(x) \mathcal{J} p(x) \mathrm{d} \mu(x)=\int x \alpha(x) p(x) \mathrm{d} \mu(x) .
$$

For orthogonal polynomials the following cyclic relation holds:

$$
\mu \rightarrow\left(p_{n}(x)\right)_{n} \rightarrow\left(a_{n}, b_{n}\right)_{n} \rightarrow \mathcal{J} \rightarrow \mu_{\delta^{(0)}}=\mu .
$$

Type I Multiple Orthogonal Polynomials

Let μ_{1}, μ_{2} be compactly supported measures and $\vec{n} \in \mathbb{N}^{2}$ be a multi-index. Type I multiple orthogonal polynomials corresponding to \vec{n} are defined by

$$
\int x^{k} Q_{\vec{n}}(x)=0, \quad k=\overline{0,|\vec{n}|-2}
$$

where $|\vec{n}|=n_{1}+n_{2}$ and the form $Q_{\vec{n}}(x)$ is given by

$$
Q_{\vec{n}}(x):=A_{\vec{n}}^{(1)}(x) \mathrm{d} \mu_{1}(x)+A_{\vec{n}}^{(2)}(x) \mathrm{d} \mu_{2}(x), \quad \operatorname{deg} A_{\vec{n}}^{(i)} \leq n_{i}-1 .
$$

If the multi-index \vec{n} is normal, $Q_{\vec{n}}(x)$ is unique up to multiplication by a constant and is normalized so that $\int x^{|\vec{n}|-1} Q_{\vec{n}}(x)=1$.

Type I Multiple Orthogonal Polynomials

Let μ_{1}, μ_{2} be compactly supported measures and $\vec{n} \in \mathbb{N}^{2}$ be a multi-index. Type I multiple orthogonal polynomials corresponding to \vec{n} are defined by

$$
\int x^{k} Q_{\vec{n}}(x)=0, \quad k=\overline{0,|\vec{n}|-2},
$$

where $|\vec{n}|=n_{1}+n_{2}$ and the form $Q_{\vec{n}}(x)$ is given by

$$
Q_{\vec{n}}(x):=A_{\vec{n}}^{(1)}(x) \mathrm{d} \mu_{1}(x)+A_{\vec{n}}^{(2)}(x) \mathrm{d} \mu_{2}(x), \quad \operatorname{deg} A_{\vec{n}}^{(i)} \leq n_{i}-1 .
$$

If the multi-index \vec{n} is normal, $Q_{\vec{n}}(x)$ is unique up to multiplication by a constant and is normalized so that $\int x^{|\vec{n}|-1} Q_{\vec{n}}(x)=1$.

It is known that

$$
x Q_{\vec{n}}(x)=Q_{\vec{n}-\vec{e}_{i}}(x)+b_{\vec{n}-\vec{e}_{i}, i} Q_{\vec{n}}(x)+a_{\vec{n}, 1} Q_{\vec{n}+\vec{e}_{1}}(x)+a_{\vec{n}, 2} Q_{\vec{n}+\vec{e}_{2}}(x)
$$

where the recurrence coefficients $a_{\vec{n}, i}, b_{\vec{n}, i}$ are the same as for type II polynomials.

Homogeneous Rooted Tree

Let \mathcal{T} be the rooted tree of all possible increasing paths on \mathbb{N}^{2} starting at $(1,1)$.

We let \mathcal{V} be the set of its vertices and $\Pi: \mathcal{V} \rightarrow \mathbb{N}^{2}$ be the natural projection and by $\iota: \mathcal{V} \rightarrow\{1,2\}$ the child function, i.e., $\iota_{Y}=i$ iff $\Pi(Y)=\Pi\left(Y_{(p)}\right)+\vec{e}_{i}$ (we also write $\left.Y=Z_{c h, i}, Z=Y_{(p)}\right)$.

Jacobi Matrices on \mathcal{T} corresponding to MOPs

Assume that

$$
\sup \left|a_{\vec{n}, i}\right|<\infty \quad \text { and } \sup \left|b_{\vec{n}, i}\right|<\infty .
$$

Define functions V, W and σ by

$$
V_{O}:=\kappa_{1} b_{(0,1), 1}+\kappa_{2} b_{(1,0), 2} \quad \text { and } \quad V_{Y}:=b_{\Pi\left(Y_{(p)}\right), \iota_{Y}},
$$

where $\vec{\kappa}=\left(\kappa_{1}, \kappa_{2}\right)$ is such that $\kappa_{1}+\kappa_{2}=1$,

$$
W_{O}:=1 \quad \text { and } \quad W_{Y}:=\left|a_{\Pi\left(Y_{(p)}\right), \iota_{Y}}\right|, \quad Y \neq O
$$

and $\sigma_{Y} \in\{0,1\}$ is such that

$$
\sigma_{O}:=0 \quad \text { and } \quad(-1)^{\sigma_{Y}} W_{Y}=a_{\Pi\left(Y_{(p)}\right), \iota_{Y}}, \quad Y \neq O
$$

Jacobi matrix $\mathcal{J}_{\vec{k}}$ on \mathcal{T} corresponding to $\left(\mu_{1}, \mu_{2}\right)$ is defined by

$$
\left(\mathcal{J}_{\vec{k}} f\right)_{Y}:=V_{Y} f_{Y}+W_{Y}^{1 / 2} f_{Y_{(p)}}+\sum_{l \in\{1,2\}}(-1)^{\sigma_{Y_{(c h), l}}} W_{Y_{(c h), l}}^{1 / 2} f_{Y_{(c h), l}}
$$

Main Identity

Let $Q_{\vec{n}}(x)$ be the type I forms for $\left(\mu_{1}, \mu_{2}\right)$ and $L_{\vec{n}}(z):=\int(z-x)^{-1} Q_{\vec{n}}(x)$. Set

$$
l_{Y}(z):=m_{Y}^{-1} L_{\Pi(Y)}(z), \quad m_{Y}:=\prod_{Z \in \operatorname{path}(Y, O)} W_{Z}^{-1 / 2}
$$

We further put $L_{\Pi\left(O_{(p)}\right)}(z):=\kappa_{1} L_{\vec{e}_{2}}(z)+\kappa_{2} L_{\vec{e}_{1}}(z)$. Then

$$
\left(\mathcal{J}_{\vec{k}}-z\right) l(z)=-L_{\Pi\left(O_{(p)}\right)}(z) \delta^{(O)}
$$

where $\delta^{(Y)}$ is the delta-function of Y on \mathcal{V}.

Main Identity

Let $Q_{\vec{n}}(x)$ be the type I forms for $\left(\mu_{1}, \mu_{2}\right)$ and $L_{\vec{n}}(z):=\int(z-x)^{-1} Q_{\vec{n}}(x)$. Set

$$
l_{Y}(z):=m_{Y}^{-1} L_{\Pi(Y)}(z), \quad m_{Y}:=\prod_{Z \in \operatorname{path}(Y, O)} W_{Z}^{-1 / 2}
$$

We further put $L_{\Pi\left(O_{(p)}\right)}(z):=\kappa_{1} L_{\vec{e}_{2}}(z)+\kappa_{2} L_{\vec{e}_{1}}(z)$. Then

$$
\left(\mathcal{J}_{\vec{k}}-z\right) l(z)=-L_{\Pi(O}^{(p)}, ~(z) \delta^{(O)}
$$

where $\delta^{(Y)}$ is the delta-function of Y on \mathcal{V}. Moreover, also holds that

$$
\left(\mathcal{J}_{[X]}-z\right) l_{[X]}(z)=-m_{X}^{-1} L_{\Pi\left(X_{(p)}\right)}(z) \delta^{(X)}
$$

where $[X]$ denotes the restriction to a subtree with root at X.

Boundedness Assumption

Theorem (A. Aptekarev, S. Denisov, and M.Y.)
Boundedness assumption is satisfied by Angelesco systems $\left(\mu_{1}, \mu_{2}\right)$:

$$
\Delta_{1} \cap \Delta_{2}=\varnothing, \quad \Delta_{i}:=\operatorname{ch}\left(\operatorname{supp} \mu_{i}\right) .
$$

Moreover, it holds that $a_{\vec{n}, i}>0$ for $\vec{n} \in \mathbb{N}^{2}$.

Boundedness Assumption

Theorem (A. Aptekarev, S. Denisov, and M.Y.)
Boundedness assumption is satisfied by Angelesco systems $\left(\mu_{1}, \mu_{2}\right)$:

$$
\Delta_{1} \cap \Delta_{2}=\varnothing, \quad \Delta_{i}:=\operatorname{ch}\left(\operatorname{supp} \mu_{i}\right) .
$$

Moreover, it holds that $a_{\vec{n}, i}>0$ for $\vec{n} \in \mathbb{N}^{2}$.

Theorem (S. Denisov and M.Y.)
For a Nikishin system of Szegő measures it holds that

$$
\lim _{n \rightarrow \infty} a_{(n, n+1), 1}=-\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} a_{(n, n+1), 2}=\infty .
$$

Boundedness Assumption

Theorem (A. Aptekarev, S. Denisov, and M.Y.)

Boundedness assumption is satisfied by Angelesco systems $\left(\mu_{1}, \mu_{2}\right)$:

$$
\Delta_{1} \cap \Delta_{2}=\varnothing, \quad \Delta_{i}:=\operatorname{ch}\left(\operatorname{supp} \mu_{i}\right) .
$$

Moreover, it holds that $a_{\vec{n}, i}>0$ for $\vec{n} \in \mathbb{N}^{2}$.

Theorem (S. Denisov and M.Y.)

For a Nikishin system of Szegő measures it holds that

$$
\lim _{n \rightarrow \infty} a_{(n, n+1), 1}=-\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} a_{(n, n+1), 2}=\infty .
$$

In the rest of this talk it is assumed that $\left(\mu_{1}, \mu_{2}\right)$ is an Angelesco system and therefore the operator $\mathcal{J}_{\vec{k}}$ is self-adjoint.

Given $X \in \mathcal{V}$ and $Y \in \mathcal{V}_{[X]}$, the corresponding Green's function is defined by

$$
G(Y, X ; z):=\left\langle\left(\mathcal{J}_{[X]}-z\right)^{-1} \delta^{(X)}, \delta^{(Y)}\right\rangle
$$

The limit $\operatorname{Im} G(X, Y ; x+i \epsilon)$ as $\epsilon \rightarrow 0^{+}$exists in the weak*-sense and we denote the corresponding generally signed measure by $\operatorname{Im} G(Y, X)^{+}$.

Of course, $\rho_{[X]}=\pi^{-1} \operatorname{Im} G(X, X)^{+}$, the spectral measure $\delta^{(X)}$ restricted to $\mathcal{V}_{[X]}$ w.r.t. $\mathcal{J}_{[X]}$, is positive.

Given $X \in \mathcal{V}$ and $Y \in \mathcal{V}_{[X]}$, the corresponding Green's function is defined by

$$
G(Y, X ; z):=\left\langle\left(\mathcal{J}_{[X]}-z\right)^{-1} \delta^{(X)}, \delta^{(Y)}\right\rangle
$$

The limit $\operatorname{Im} G(X, Y ; x+i \epsilon)$ as $\epsilon \rightarrow 0^{+}$exists in the weak*-sense and we denote the corresponding generally signed measure by $\operatorname{Im} G(Y, X)^{+}$.
Of course, $\rho_{[X]}=\pi^{-1} \operatorname{Im} G(X, X)^{+}$, the spectral measure $\delta^{(X)}$ restricted to $\mathcal{V}_{[X]}$ w.r.t. $\mathcal{J}_{[X]}$, is positive.

Proposition
For all $z \notin \Delta_{1} \cup \Delta_{2}$ it holds that

$$
G(Y, X ; z)=-\frac{m_{X}}{m_{Y}} \frac{L_{\Pi(Y)}(z)}{L_{\Pi\left(X_{(p)}\right)}(z)}
$$

Proposition (S. Denisov and M.Y.)

Measure $\rho_{[X]}$ has a semi-explicit expression.

It holds that

$$
\operatorname{dIm} G(Y, X)^{+}(x)=\pi \Psi_{Y}(X ; x) \mathrm{d} \rho_{[X]}(x)
$$

for every $Y \in \mathcal{V}_{[X]}$, where $\Psi(X ; x)$ is such that

$$
\mathcal{J}_{[X]} \Psi(X ; x)=x \Psi(X ; x) \quad \text { and } \quad \delta_{Y}^{(X)}=\int \Psi_{Y}(X ; x) \mathrm{d} \rho_{[X]}(x) .
$$

Let $\mathfrak{C}^{(X)}$ be the cyclic subspace of $\ell^{2}\left(\mathcal{V}_{[X]}\right)$ generated by $\delta^{(X)}$, that is,

$$
\mathfrak{C}^{(X)}:=\overline{\operatorname{span}\left\{\mathcal{J}_{[X]}^{n} \delta^{(X)}: n \in \mathbb{Z}_{+}\right\}} .
$$

Proposition (S. Denisov and M.Y.)

Fix $X \in \mathcal{V}$. The map

$$
\alpha(x) \mapsto \widehat{\alpha}=\left\{\widehat{\alpha}_{Y}\right\}_{Y \in \mathcal{Y}_{[X]}}, \quad \widehat{\alpha}_{Y}:=\int \alpha(x) \Psi_{Y}(X ; x) \mathrm{d} \rho_{[X]}(x),
$$

is a unitary map from $L^{2}\left(\rho_{[X]}\right)$ onto $\mathfrak{C}^{(X)}$. In particular, it holds that

$$
\|\alpha\|_{L^{2}\left(\rho_{[X]}\right)}^{2}=\|\widehat{\alpha}\|_{\ell^{2}\left(\mathcal{V}_{[X]}\right)}^{2} \quad \text { and } \quad \tilde{C}^{(X)}=\left\{\widehat{\alpha}: \alpha \in L^{2}\left(\rho_{[X]}\right)\right\} .
$$

We also have that

$$
x \alpha(x) \mapsto \mathcal{J}_{[X]} \widehat{\alpha}, \quad \alpha \in L^{2}\left(\rho_{[X]}\right)
$$

Fix $X \in \mathcal{V}$ and let $X_{i}=X_{(c h), i}, i \in\{1,2\}$. There exists measure $\widetilde{\rho}_{X}$ such that

$$
\mathrm{d} \rho_{\left[X_{i}\right]}(x)=v_{X_{i}}(x) \mathrm{d} \widetilde{\rho}_{X}(x)
$$

where it holds that $c_{X}^{-1} \leq v_{X_{i}}(x) \leq c_{X}, x \in \Delta_{1} \cup \Delta_{2}$. Let

$$
\widehat{\Psi}_{Y}(X ; x):=(-1)^{i} W_{X_{i}}^{-1 / 2} \Psi_{Y}\left(X_{i} ; x\right), \quad Y \in \mathcal{V}_{\left[X_{i}\right]},
$$

and $\widehat{\Psi}_{Y}(X ; x):=0$ otherwise. Define

$$
\widehat{\mathfrak{C}}^{(X)}:=\left\{\int \alpha(x) \widehat{\Psi}(X ; x) \mathrm{d} \widetilde{\rho}_{X}(x): \quad \alpha \in L^{2}\left(\widetilde{\rho}_{X}\right)\right\}
$$

Proposition (S. Denisov and M.Y.)

It holds that $\mathcal{J}_{\widehat{\kappa}} \widehat{\Psi}(X ; x)=x \widehat{\Psi}(X ; x)$. Let $g_{i}^{(X)} \in \widehat{\mathbb{C}}^{(X)}$ be given by

$$
g_{i}^{(X)}:=(-1)^{i} W_{X_{i}}^{1 / 2} \int \widehat{\Psi}(X ; x) \mathrm{d} \rho_{\left[X_{i}\right]}(x) .
$$

Then, it holds that

$$
\widehat{\mathbb{C}}^{(X)}=\overline{\operatorname{span}\left\{\mathcal{J}_{\vec{k}}^{n} g_{i}^{(X)}: n \in \mathbb{Z}_{+}\right\}} .
$$

Furthermore, it holds that

$$
\mathrm{d} \rho_{X, i}(x)=\sum_{k=1}^{2} \frac{W_{X_{i}}}{W_{X_{k}}} \frac{v_{X_{i}}^{2}(x)}{v_{X_{k}}(x)} \mathrm{d} \widetilde{\rho}_{X}(x),
$$

where $\rho_{X, i}$ is the spectral measure of $g_{i}^{(X)}$ with respect to $\mathcal{T}_{\vec{k}}$.

Theorem (S. Denisov and M.Y.)

$$
\ell^{2}(\mathcal{V})=\mathfrak{C}^{(O)} \bigoplus \mathcal{L}, \quad \mathcal{L}=\bigoplus_{X \in \mathcal{V}} \widehat{\mathfrak{C}}^{(X)}
$$

Theorem (S. Denisov and M.Y.)

$$
\ell^{2}(\mathcal{V})=\mathfrak{C}^{(O)} \bigoplus \mathcal{L}, \quad \mathcal{L}=\bigoplus_{X \in \mathcal{V}} \widehat{\mathfrak{C}}^{(X)}
$$

The set $E_{\vec{\kappa}}:=\left\{E: \kappa_{1} L_{\vec{e}_{2}}(E)+\kappa_{2} L_{\vec{e}_{1}}(E)=0, E \in \mathbb{R} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right\}$ is either empty or has exactly one element in it. It is empty when $\vec{\kappa}=\vec{e}_{i}$, $i \in\{1,2\}$. It holds that

$$
\sigma\left(\mathcal{J}_{\vec{k}}\right) \subseteq \Delta_{1} \cup \Delta_{2} \cup E_{\vec{k}}
$$

If supp $\mu_{k}=\Delta_{k}, k \in\{1,2\}$, then inclusion becomes equality.

Theorem (S. Denisov and M.Y.)

$$
\ell^{2}(\mathcal{V})=\mathfrak{C}^{(O)} \bigoplus \mathcal{L}, \quad \mathcal{L}=\bigoplus_{X \in \mathcal{V}} \widehat{\mathfrak{C}}^{(X)}
$$

The set $E_{\vec{\kappa}}:=\left\{E: \kappa_{1} L_{\vec{e}_{2}}(E)+\kappa_{2} L_{\vec{e}_{1}}(E)=0, E \in \mathbb{R} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right\}$ is either empty or has exactly one element in it. It is empty when $\vec{\kappa}=\vec{e}_{i}$, $i \in\{1,2\}$. It holds that

$$
\sigma\left(\mathcal{J}_{\vec{k}}\right) \subseteq \Delta_{1} \cup \Delta_{2} \cup E_{\vec{k}} .
$$

If supp $\mu_{k}=\Delta_{k}, k \in\{1,2\}$, then inclusion becomes equality.

If $d \mu_{k}(x)=\mu_{k}^{\prime}(x) \mathrm{d} x$ and $\left(\mu_{k}^{\prime}\right)^{-1} \in L^{\infty}\left(\Delta_{k}\right), k \in\{1,2\}$, then the spectrum of $\mathcal{J}_{\vec{e}_{i}}$ is purely absolutely continuous.

