

Meromorphic Approximation

Rational Approximation

Uniqueness

Symmetric Contours

Asymptotics Uniqueness of Best Rational Approximants in $L^2(\mathbb{T})$ to Cauchy Transforms

M. Yattselev Project APICS, INRIA, Sophia Antipolis, France

joint work with

L. Baratchart Project APICS, INRIA, Sophia Antipolis, France

Motivation ●○○○○	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
"Crack" Problem				

Motivation ●○○○○	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
"Crack" Problem				

Motivation ●○○○○	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
"Crack" Problem				

Motivation ●○○○○	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
"Crack" Problem				

Motivation ○●○○○	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
"Crack" Problem				

Let *u* be the equilibrium distribution of heat or current. Then

$$\left\{ \begin{array}{ll} \Delta u = 0 & \text{in } D \setminus \gamma \\ \\ \frac{\partial u}{\partial n_{\Gamma}} = \Phi & \text{on } \Gamma := \partial D \\ \\ \frac{\partial u^{\pm}}{\partial n_{\gamma}^{\pm}} = 0 & \text{on } \gamma \setminus \{\gamma_0, \gamma_1\} \end{array} \right.,$$

where Δu is the Laplacian of u.

Motivation 00●00	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
"Crack" Problem				

Methods of crack identification:

 iterative methods: solve direct problem, use some minimizing criteria, crack needs to be localized in advance;

Motivation 00●00	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
"Crack" Problem				

Methods of crack identification:

- iterative methods: solve direct problem, use some minimizing criteria, crack needs to be localized in advance;
- semi-explicit methods: localization through approximation of *u* in the whole domain *D*;

Motivation 00●00	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
"Crack" Problem				

Methods of crack identification:

- iterative methods: solve direct problem, use some minimizing criteria, crack needs to be localized in advance;
- semi-explicit methods: localization through approximation of *u* in the whole domain *D*;
- method of meromorphic approximants introduced by L. Baratchart and E. B. Saff.

Motivation ○○○●○	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Idea of the Met	hod			

It can be shown that *u* has well-defined conjugate in $D \setminus \gamma$ and

$$\mathcal{F}(\xi) = u(\xi) - i \int_{\xi_0}^{\xi} \Phi ds, \quad \xi \in \Gamma.$$

Motivation ○○○●○	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Idea of the Metho	d			

It can be shown that *u* has well-defined conjugate in $D \setminus \gamma$ and

$$\mathcal{F}(\xi) = u(\xi) - i \int_{\xi_0}^{\xi} \Phi ds, \quad \xi \in \Gamma.$$

Further,

$$\mathcal{F}(z) = h(z) + rac{1}{2\pi i} \int_{\gamma} rac{(\mathcal{F}^- - \mathcal{F}^+)(t)}{z - t} dt, \quad z \in D \setminus \gamma,$$

where *h* is analytic in *D* and continuous in \overline{D} .

Motivation ○○○●○	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Idea of the Metho	d			

It can be shown that *u* has well-defined conjugate in $D \setminus \gamma$ and

$$\mathcal{F}(\xi) = u(\xi) - i \int_{\xi_0}^{\xi} \Phi ds, \quad \xi \in \Gamma.$$

Further,

$$\mathcal{F}(z) = h(z) + rac{1}{2\pi i} \int_{\gamma} rac{(\mathcal{F}^- - \mathcal{F}^+)(t)}{z - t} dt, \quad z \in D \setminus \gamma,$$

where *h* is analytic in *D* and continuous in \overline{D} .

One approximates \mathcal{F} on Γ by meromorphic in D functions and observes the asymptotic behavior of their poles as the number of poles growth large.

Motivation ○○○○●	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Idea of the Met	hod			

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Cauchy Transform	าร			

Let μ be a complex measure whose support, S_{μ} , is a subset of the unit disk, \mathbb{D} .

Define the Cauchy transform of μ by

$$\mathcal{F}(z) = \mathcal{F}(\mu; z) := \int rac{d\mu(t)}{z-t}$$

and denote

$$D_{\mathcal{F}} := \overline{\mathbb{C}} \setminus S_{\mu}.$$

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Hardy Spaces				

Let *h* be a complex-valued function on the unit circle, \mathbb{T} . Then

$$h \in L^{p} \quad \text{iff} \quad \|h\|_{p}^{p} := \sum |h_{j}|^{p} < \infty, \ h_{j} := \frac{1}{2\pi} \int_{\mathbb{T}} \xi^{-j} h(\xi) |d\xi|,$$
$$h \in L^{\infty} \quad \text{iff} \quad \|h\|_{\infty} := \text{ess.} \sup_{\mathbb{T}} |h| < \infty.$$

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Hardy Spaces				

Let *h* be a complex-valued function on the unit circle, \mathbb{T} . Then

$$h \in L^{p} \quad \text{iff} \quad \|h\|_{p}^{p} := \sum |h_{j}|^{p} < \infty, \ h_{j} := \frac{1}{2\pi} \int_{\mathbb{T}} \xi^{-j} h(\xi) |d\xi|,$$
$$h \in L^{\infty} \quad \text{iff} \quad \|h\|_{\infty} := \text{ess.} \sup_{\mathbb{T}} |h| < \infty.$$

Let $p \in [2, \infty]$. The Hardy spaces are defined by

$$\begin{array}{rcl} H^p & := & \left\{ h \in L^p : \ h_j = 0, \ j < 0 \right\}, \\ \bar{H}^p_0 & := & \left\{ h \in L^p : \ h_j = 0, \ j > -1 \right\}. \end{array}$$

Rational Approximation

Uniqueness

Symmetric Contours

Spaces of Meromorphic Functions

Fix $p \in [2, \infty]$ and $n \in \mathbb{N}$. The space of meromorphic functions of the degree *n* is defined as

$$H_n^p := H^p + \mathcal{R}_n,$$

where \mathcal{R}_n is the set of rational functions of type (n-1, n) with all their poles in \mathbb{D} .

Meromorphic Approximation	Rational Approximation	Symmetric Contou
0000		

Meromorphic Approximation Problem

Meromorphic approximation problem:

$$\|\mathcal{F}-g_n\|_p = \inf_{g\in H_n^p} \|\mathcal{F}-g\|_p.$$

Meromorphic Approximation	Rational Approximation	Symmetric Contour
0000		

Meromorphic Approximation Problem

Meromorphic approximation problem:

$$\|\mathcal{F}-g_n\|_{
ho}=\inf_{g\in H_n^{
ho}}\|\mathcal{F}-g\|_{
ho}.$$

This problem always admits a solution:

- Adamjan, Arov, and Krein^{*a*}, $p = \infty$;
- Baratchart and Seyfert^b & Prokhorov^c, $p \in [1, \infty)$.

^aAnalytic properties of Schmidt pairs for a Hankel operator on the generalized Schur-Takagi problem. *Math. USSR Sb.*, 15: 31-73, 1971 ^bAn L^p analog of AAK theory for $p \ge 2$. *J. Funct. Anal.*, 191(1): 52-122, 2002 ^cOn L^p -generalization of a theorem of Adamyan, Arov, and Krein. *Comput. Methods Funct. Theory*, 1(2): 501-520, 2001

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Boduction to P	ational Eurotiana			

Let $g_n = h_n + r_n$, $h_n \in H^2$ and $r_n \in R_n$, be a best approximant for \mathcal{F} in MAP with p = 2. Then

$$\|\mathcal{F} - g_n\|_2^2 = \|h_n\|_2^2 + \|\mathcal{F} - r_n\|_2^2.$$

Motivation	Meromorphic Approximation	Rational Approximation ●○○○○○	Uniqueness 000000000	Symmetric Contours
Poduction to P	lational Eurotiana			

Let $g_n = h_n + r_n$, $h_n \in H^2$ and $r_n \in R_n$, be a best approximant for \mathcal{F} in MAP with p = 2. Then

$$\|\mathcal{F} - g_n\|_2^2 = \|h_n\|_2^2 + \|\mathcal{F} - r_n\|_2^2.$$

Therefore, we arrive at

Rational Approximation Problem

$$\|\mathcal{F}-r_n\|_2=\inf_{r\in\mathcal{R}_n}\|\mathcal{F}-r\|_2.$$

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Critical Points				

Definitions

• We say that $r \in \mathcal{R}_n$ is a critical point in RAP for \mathcal{F} if

 $D\Theta(r)=0,$

where
$$\Theta(r) := \Theta_{\mathcal{F},n}(r) = \|\mathcal{F} - r\|_2^2$$
.

Motivation	Meromorphic Approximation	Rational Approximation	Uniquenes
Critical Points			

Definitions

• We say that $r \in \mathcal{R}_n$ is a critical point in RAP for \mathcal{F} if

 $D\Theta(r)=0,$

where $\Theta(r) := \Theta_{\mathcal{F},n}(r) = \|\mathcal{F} - r\|_2^2$.

• We say that *r_n* is irreducible critical point if *r_n* has exactly *n* poles. (It is known that all best and locally best rational approximants are always irreducible critical points.)

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours	
Orthogonality Relations					

Let
$$r_n = p_{n-1}/q_n$$
 be a critical point in RAP to \mathcal{F} . Then

Rational function r_n interpolates \mathcal{F} at the reflections of the zeros of q_n with order 2 in the Hermite sense.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours	
Orthogonality Relations					

Let
$$r_n = p_{n-1}/q_n$$
 be a critical point in RAP to \mathcal{F} . Then

Rational function r_n interpolates \mathcal{F} at the reflections of the zeros of q_n with order 2 in the Hermite sense.

In other words, r_n is a multipoint Padé approximant with the implicitly defined interpolation set. Furthermore,

$$\int t^j q_n(t) \frac{d\mu(t)}{\widetilde{q}_n^2(t)} = 0, \quad j = 0, \ldots, n-1,$$

where $\tilde{q}_n(z) = z^n \overline{q_n(1/\bar{z})}$ is the reciprocal polynomial.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Some Definition	IS			

Let *F* be an interval contained in (-1, 1) with the endpoints *a* and *b*. Set

• $w(z) = w(F, z) := \sqrt{(z - a)(z - b)}$ to be a holomorphic outside of *F* function such that $w(z)/z \to 1$ as $z \to \infty$. Then $w^+ = -w^-$ on *F*;

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Some Definitio	ns			

Let *F* be an interval contained in (-1, 1) with the endpoints *a* and *b*. Set

- $w(z) = w(F, z) := \sqrt{(z a)(z b)}$ to be a holomorphic outside of *F* function such that $w(z)/z \to 1$ as $z \to \infty$. Then $w^+ = -w^-$ on *F*;
- ϕ to be the conformal map $\overline{\mathbb{C}} \setminus (F \cup F^{-1})$ onto an annulus $\{\rho \le |z| \le 1/\rho\}$ such that $\phi(\mathbb{T}) = \mathbb{T}$ and $\phi(\pm 1) = \pm 1$;

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Some Definitio	ins			

Let *F* be an interval contained in (-1, 1) with the endpoints *a* and *b*. Set

- $w(z) = w(F, z) := \sqrt{(z a)(z b)}$ to be a holomorphic outside of *F* function such that $w(z)/z \to 1$ as $z \to \infty$. Then $w^+ = -w^-$ on *F*;
- ϕ to be the conformal map $\overline{\mathbb{C}} \setminus (F \cup F^{-1})$ onto an annulus $\{\rho \le |z| \le 1/\rho\}$ such that $\phi(\mathbb{T}) = \mathbb{T}$ and $\phi(\pm 1) = \pm 1$;
- μ to be of the form $d\mu(t) = \frac{h(t)dt}{w^+(t)}$, where *h* is a non-vanishing Dini-continuous function on *F*.

Then the following theorem takes place.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Strong Asympt	atics for the Error			

Theorem 1 (Baratchart and Y.)

Let $\{r_n\}$ be a sequence of irreducible critical points in RAT for \mathcal{F} with μ as described. Then

$$(\mathcal{F}-r_n)(z)=(\mathcal{D}+o(1))\frac{w^*(z)}{w(z)}\left(\frac{\rho}{\phi(z)}\right)^{2n}D_n(z)$$

locally uniformly in $D_{\mathcal{F}}$, where

- $w^*(z) = z \overline{w(1/\overline{z})};$
- D is some constant;
- $\{D_n\}$ is a sequence of outer functions in $\overline{\mathbb{C}} \setminus (F \cup F^{-1})$;
- $|D_n|$ are uniformly bounded away from zero and infinity.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Strong Asymptotic	cs for the Error			

The proof of the above stated result utilizes:

 a priori knowledge of the behavior of the arguments of q_n on F (B, Küstner, Totik^a);

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Strong Asymptoti	cs for the Error			

The proof of the above stated result utilizes:

- a priori knowledge of the behavior of the arguments of q_n on F (B, Küstner, Totik^a);
- formulae of strong asymptotics for polynomials satisfying non-Hermitian orthogonality relations with varying measures on arcs (last section and almost Aptekarev^b);

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness ooooooooo	Symmetric Contours
Strong Asymptotic	es for the Error			

The proof of the above stated result utilizes:

- a priori knowledge of the behavior of the arguments of q_n on F (B, Küstner, Totik^a);
- formulae of strong asymptotics for polynomials satisfying non-Hermitian orthogonality relations with varying measures on arcs (last section and almost Aptekarev^b);
- special connection (reciprocity) between the polynomial part of the weight, q_n², and the orthogonal polynomials q_n (B, Stahl, Wielonsky^c).

^aZero distribution via orthogonality. *Ann. Inst. Fourier.*, 55(5): 1455-1499, 2005 ^bSharp constants for rational approximations of analytic functions. *Sb. Math.*, 193(1-2): 1-72, 2002

 $^c\mbox{Asymptotic error estimates for } L^2$ best rational approximants to Markov functions. J. Approx. Theory., 108: 53-96, 2001

Motivation	Meromorphic Approximation	Rational App
Rationale		

Numerical search of best rational approximants is a nonconvex optimization problem and therefore it often gets trapped in local minima. However, if there is only one local minimum, the descent algorithms converge.

Motivation 00000	Meromorphic Approximation	Rational Approximation	Uniqueness ○●○○○○○○○	Symmetric Contours
Index Theorem				
Defir	nitions			

• A critical point *r* is called nondegenerate if $D^2 \Theta(r)$ is a nonsingular quadratic form.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness ○●○○○○○○○	Symmetric Contours
Index Theorem				

Definitions

- A critical point *r* is called nondegenerate if D²⊖(*r*) is a nonsingular quadratic form.
- The Morse index of a nondegenerate critical point r, M(r), is the number of negative eigenvalues of $D^2 \Theta_{\mathcal{F}}(r)$.

Motivation 00000	Meromorphic Approximation	Rational Approximation	Uniqueness ○●○○○○○○○	Symmetric Contours
Index Theorem				

Definitions

- A critical point *r* is called nondegenerate if $D^2 \Theta(r)$ is a nonsingular quadratic form.
- The Morse index of a nondegenerate critical point r, M(r), is the number of negative eigenvalues of $D^2 \Theta_{\mathcal{F}}(r)$.

Theorem (Baratchart and Olivi)^a

If all the critical points are nondegenerate and neither of them interpolates ${\cal F}$ on $\mathbb{T},$ then there are only finitely many such points and

$$\sum (-1)^{M(r_c)} = 1.$$

^a Index of critical points in *I*²-approximation. *Systems Control Lett.*, 10: 167-174, 1988

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness ○○●○○○○○○	Symmetric Contours
Criterion for Uniq	ueness			

Theorem (Adopted from Baratchart, Stahl, Wielonsky)^a

Let r_n be an irreducible critical point of order n that does not interpolate \mathcal{F} on \mathbb{T} . If there exists a meromorphic function Π with at most of n-1 poles in \mathbb{D} , continuous on \mathbb{T} , such that

$$2|\mathcal{F}-r_n|\leq |\Pi-r_n| \quad \text{on} \quad \mathbb{T},$$

and the winding number

$$\mathbf{w}_{\mathbb{T}}(\mathcal{F}-\Pi) \leq 1-2n,$$

then r_n is a local minimum, i.e. $D^2\Theta(r)$ is positive definite.

^aAsymptotic uniqueness of best rational approximants of given degree to Markov functions in L^2 of the circle. *Constr. Approx.*, 17: 103-138, 2001

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness ○○○●○○○○○	Symmetric Contours
Multipoint Pad	é Approximants			

Set

•
$$\varphi_i(z) = z - w(z);$$

•
$$\varphi(z) = z + w(z);$$

• E_n to be a set of 2n points in $D := \overline{\mathbb{C}} \setminus F$;

•
$$\Psi_n(z) := \prod_{e \in E_n} \frac{\varphi(z) - \varphi(e)}{1 - \varphi(z)\varphi(e)};$$

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness ○○○○●○○○○	Symmetric Contours
Multinaint Dad	6 Annual incomto			

Definition

A system of sets $\{E_n\}$ is called admissible if, to each $n \in \mathbb{N}$, there is a one-to-one correspondence $\Delta_n : E_n \to E_n$ such that

$$\sup_{n\in\mathbb{N}}\sum_{\boldsymbol{e}\in E_n}\frac{|\bar{\varphi}_i(\boldsymbol{e})-\Delta_n(\varphi_i(\boldsymbol{e}))|}{(1-|\varphi_i(\boldsymbol{e})|)(1-|\Delta_n(\varphi_i(\boldsymbol{e}))|)}<\infty$$

and

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness ○○○○●○○○○	Symmetric Contour
Multinaint Dad	6 Annual incomto			

Definition

A system of sets $\{E_n\}$ is called admissible if, to each $n \in \mathbb{N}$, there is a one-to-one correspondence $\Delta_n : E_n \to E_n$ such that

$$\sup_{n \in \mathbb{N}} \sum_{\boldsymbol{e} \in E_n} \frac{|\bar{\varphi}_i(\boldsymbol{e}) - \Delta_n(\varphi_i(\boldsymbol{e}))|}{(1 - |\varphi_i(\boldsymbol{e})|)(1 - |\Delta_n(\varphi_i(\boldsymbol{e}))|)} < \infty$$

and

$$\lim_{n\to\infty}\sum_{\boldsymbol{e}\in E_n}(1-|\varphi_i(\boldsymbol{e})|)=\infty.$$

Motivation	Meromorphic Approximation	Rational App
Multipoint Pad	é Approximants	

Note

Admissibility implies that Ψ_n = o(1) in C \ F and |Ψ_n[±]| are uniformly bounded above on F.

Meromorphic Approximatio

Rational Approximation

Uniqueness

Symmetric Contours

Multipoint Padé Approximants

Note

- Admissibility implies that Ψ_n = o(1) in C \ F and |Ψ_n[±]| are uniformly bounded above on F.
- Let r_n be an irreducible critical point in RAP to \mathcal{F} of order n and let $\{\xi_{j,n}\}$ be its poles. Then $E_n^* := \{1/\overline{\xi}_{j,n}\}$ form an admissible sequence of sets. We shall denote associated "rational" functions by Ψ_n^* .

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness ○○○○○●○○	Symmetric Contours
Multipoint Padé	Approximants			

Theorem 2 (Baratchart and Y.)

Let $\{E_n\}$ be an admissible sequence of sets and \mathcal{F} be as in Theorem 1. Further, let Π_n be the diagonal multipoint Padé approximant of order *n* with the interpolation set E_n . Then

$$(\mathcal{F}-\Pi_n)(z)=(\mathcal{G}+o(1))\frac{\Psi_n(z)}{w(z)}S_n(z)$$

locally uniformly in $D_{\mathcal{F}}$, where

- *G* is some constant;
- $\{S_n\}$ is a sequence of outer functions in $\overline{\mathbb{C}} \setminus F$;
- $|S_n|$ are uniformly bounded away from zero and infinity.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness ○○○○○○●○	Symmetric Contours
Good "Bad" App	roximants			

We take $\Pi = \Pi_{n-1}$ for some admissible interpolation scheme $\{E_n\}$. By the previous theorem $\mathbf{w}(\mathcal{F} - \Pi_{n-1}) = 1 - 2n$ whenever $E_n \subset \mathbb{C} \setminus \overline{\mathbb{D}}$. Thus, points $\{E_n\}$ need to be chosen in $\mathbb{C} \setminus \overline{\mathbb{D}}$ so

$$\left|1-\frac{\mathcal{F}-\Pi_{n-1}}{\mathcal{F}-r_n}\right|>2$$
 on \mathbb{T} ,

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness ○○○○○○●○	Symmetric Contours
Good "Bad" App	roximants			

We take $\Pi = \Pi_{n-1}$ for some admissible interpolation scheme $\{E_n\}$. By the previous theorem $\mathbf{w}(\mathcal{F} - \Pi_{n-1}) = 1 - 2n$ whenever $E_n \subset \mathbb{C} \setminus \overline{\mathbb{D}}$. Thus, points $\{E_n\}$ need to be chosen in $\mathbb{C} \setminus \overline{\mathbb{D}}$ so

$$1-\frac{\mathcal{F}-\Pi_{n-1}}{\mathcal{F}-r_n}\Big|>2 \quad \text{on} \quad \mathbb{T},$$

i.e.

 $|\Psi_{n-1}(z)/\Psi_n^*(z)| > 2.$

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness ○○○○○○○●	Symmetric Contours
Good "Bad" Ar	oprovimants			

Facts (modified Baratchart, Stahl, Wielonsky)

One can construct {*E_n*} based on {*E_n*^{*}} so that functions log |Ψ_{n-1}/Ψ_n^{*}| approximate the Green potential of any signed measure of total mass 2 supported on *F⁻¹*;

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness	Symmetric Contours
Good "Bod" A	oprovimante			

Facts (modified Baratchart, Stahl, Wielonsky)

- One can construct {*E_n*} based on {*E_n*^{*}} so that functions log |Ψ_{n-1}/Ψ_n^{*}| approximate the Green potential of any signed measure of total mass 2 supported on *F*⁻¹;
- there exists a measure on *F*⁻¹ whose Green potential satisfies |1 − *G*| > 2 everywhere on T.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness ○○○○○○○●	Symmetric Contours
Good "Pod" Ar	anrovimente			

Facts (modified Baratchart, Stahl, Wielonsky)

- One can construct {*E_n*} based on {*E_n*^{*}} so that functions log |Ψ_{n-1}/Ψ_n^{*}| approximate the Green potential of any signed measure of total mass 2 supported on *F*⁻¹;
- there exists a measure on *F*⁻¹ whose Green potential satisfies |1 − *G*| > 2 everywhere on T.

Theorem 3 (Baratchart and Y.)

Let \mathcal{F} be as in Theorem 1. Then for all *n* large enough there exists a unique critical point of order *n*.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Setting				

Let F be now any oriented smooth arc connecting ± 1 . Set

• w(z) := w(F, z) defined as before;

•
$$\varphi(z) = z + w(z);$$

- E_n to be a set of 2n points in $D := \overline{\mathbb{C}} \setminus F$;
- *v_n* to be a polynomial with zeros at finite points of *E_n*;

•
$$\Psi_n(z) := \prod_{e \in E_n} \frac{\varphi(z) - \varphi(e)}{1 - \varphi(z)\varphi(e)};$$

• *h* to be a Dini-continuous non-vanishing function on *F*.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Szegő Function				

For *h* as above we define geometric mean:

$$G_h := \exp\left\{\int \log h(t) \frac{idt}{\pi w^+(t)}\right\}$$

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Szegő Function				

For *h* as above we define geometric mean:

$$G_h := \exp\left\{\int \log h(t) rac{idt}{\pi w^+(t)}
ight\}$$

and Szegő function:

$$S_h(z) := \exp\left\{rac{w(z)}{2}\int rac{\log(h(t)/G_h)}{t-z}rac{idt}{\pi w^+(t)}
ight\}.$$

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Szegő Function				

For *h* as above we define geometric mean:

$$G_h := \exp\left\{\int \log h(t) rac{idt}{\pi w^+(t)}
ight\}$$

and Szegő function:

$$S_h(z) := \exp\left\{rac{w(z)}{2}\int rac{\log(h(t)/G_h)}{t-z}rac{idt}{\pi w^+(t)}
ight\}.$$

Then S_h is an outer function in $\overline{\mathbb{C}} \setminus F$, $S_h(\infty) = 1$, and S_h^{\pm} are continuous functions on F such that

$$h=G_hS_h^+S_h^-.$$

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Measures				

Orthogonal polynomials:

$$\int_F t^j q_n(t) w_n(t) \frac{dt}{w^+(t)} = 0, \quad j = 0, \ldots, n-1.$$

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Measures				

Orthogonal polynomials:

$$\int_{F} t^{j} q_{n}(t) w_{n}(t) \frac{dt}{w^{+}(t)} = 0, \quad j = 0, \ldots, n-1.$$

Functions of second kind:

$$R_n(z) := rac{1}{\pi i} \int_F rac{q_n(t)w_n(t)}{t-z} rac{dt}{w^+(t)}, \quad z \in \overline{\mathbb{C}} \setminus F.$$

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Measures				

Orthogonal polynomials:

$$\int_{F} t^{j} q_{n}(t) w_{n}(t) \frac{dt}{w^{+}(t)} = 0, \quad j = 0, \ldots, n-1.$$

Functions of second kind:

$$R_n(z):=\frac{1}{\pi i}\int_F\frac{q_n(t)w_n(t)}{t-z}\frac{dt}{w^+(t)},\quad z\in\overline{\mathbb{C}}\setminus F.$$

Weights:

$$w_n(t)=\frac{h(t)}{v_n(t)},$$

where E_n (that is v_n) are such that $\Psi_n = o(1)$ locally uniformly in D and $|\Psi_n^{\pm}| = O(1)$ uniformly on F.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Main Theorem				

Theorem (Baratchart and Y.)

Let $\{q_n\}_{n \in \mathbb{N}}$ be a sequence of polynomials as above.

Then each polynomials q_n has exact degree n for all n large enough and therefore can be normalized to be monic.

Under such a normalization we have

$$\begin{cases} q_n = (1 + o(1))/S_n \\ R_n w = (1 + o(1))\gamma_n S_n \end{cases}$$

locally uniformly in D

and

$$\frac{q_n^2(t)w_n(t)}{\gamma_nw^+(t)}dt \stackrel{*}{\to} \frac{dt}{w^+(t)},$$

where $S_n := S_{w_n}(2/\varphi)^n$, $\gamma_n := 2^{1-2n}G_{w_n}$, and $\xrightarrow{*}$ stands for the weak^{*} converges of measures.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Main Theorem				

Theorem (BY)

Further,

$$\begin{cases} q_n = (1+d_n^-)/S_n^+ + (1+d_n^+)/S_n^- \\ (R_n w)^{\pm} = (1+d_n^{\pm}) \gamma_n S_n^{\pm} \end{cases} \text{ on } F,$$

where d_n^{\pm} are continuous on *F* and satisfy

$$\int_{F} \frac{|d_{n}^{-}(t)|^{p} + |d_{n}^{+}(t)|^{p}}{\sqrt{|1 - t^{2}|}} |dt| \to 0 \text{ as } n \to \infty$$

for any $p \in [1, \infty)$.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Remarks				

Remarks

 smoothness of F can be reduced. Most likely we can handle quasismooth arcs without twisting points;

Meromorphic Approximation	

Rational Approximation

Uniqueness

Symmetric Contours

Remarks

Remarks

- smoothness of F can be reduced. Most likely we can handle quasismooth arcs without twisting points;
- function h, in fact, can vanish at a finite number of points in a "controlled manner";

Meromorphic App

Remarks

Rational Approxima

Uniqueness 000000000 Symmetric Contours

Remarks

- smoothness of F can be reduced. Most likely we can handle quasismooth arcs without twisting points;
- function h, in fact, can vanish at a finite number of points in a "controlled manner";
- we can consider a compact family $\{h_n\}$ instead of *h*.

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
An Example				

For any $\alpha \in \mathbb{R}$ denote

$$F_{\alpha} := \left\{ \frac{i\alpha + x}{1 + i\alpha x} : x \in [-1, 1] \right\}.$$

and for any point $e \in \mathbb{C}$ define

$$e^* = rac{2ilpha + (1-lpha^2)ar{e}}{(1-lpha^2) + 2ilphaar{e}}.$$

Then

$$oldsymbol{e}^* = oldsymbol{e}$$
 for any $oldsymbol{e} \in F_lpha^{-1}$

and

$$|(\Psi_e\Psi_{e*})^{\pm}|=1$$
 on F_{lpha} ,

where

$$\Psi_{\boldsymbol{\theta}}(\boldsymbol{z}) := rac{\varphi(\boldsymbol{z}) - \varphi(\boldsymbol{\theta})}{1 - \varphi(\boldsymbol{z})\varphi(\boldsymbol{\theta})}.$$

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Numerics				

$$w_n(t) = \exp\left\{\frac{2it-1}{2i-t}\pi\right\}/(t-2i)^{2n}$$

Zeros of q_{10} (black) and q_{15} (red).

Motivation	Meromorphic Approximation	Rational Approximation	Uniqueness 000000000	Symmetric Contours
Numerics				

$$w_n(t) = t^{-n}(t+4i/3)^{-n}$$

Zeros of q_{10} (black), q_{15} (red), and q_{20} (blue).