Asymptotics Uniqueness of Best Rational Approximants in $L^2(\mathbb{T})$ to Cauchy Transforms

M. Yattselev
Project APICS, INRIA, Sophia Antipolis, France

joint work with

L. Baratchart
Project APICS, INRIA, Sophia Antipolis, France
Motivation

Meromorphic Approximation

Rational Approximation

Uniqueness

Symmetric Contours

“Crack” Problem
Motivation
Meromorphic Approximation
Rational Approximation
Uniqueness
Symmetric Contours

“Crack” Problem

\[\int_{\gamma} \Phi \, ds = 0 \]
\[\int_{\Gamma} \Phi \, ds = 0 \]
Let u be the equilibrium distribution of heat or current. Then

$$
\begin{cases}
\Delta u = 0 & \text{in } D \setminus \gamma \\
\frac{\partial u}{\partial n_\Gamma} = \Phi & \text{on } \Gamma := \partial D, \\
\frac{\partial u^\pm}{\partial n^\pm_\gamma} = 0 & \text{on } \gamma \setminus \{\gamma_0, \gamma_1\}
\end{cases}
$$

where Δu is the Laplacian of u.
Methods of crack identification:

- iterative methods: solve direct problem, use some minimizing criteria, crack needs to be localized in advance;
Methods of crack identification:

- iterative methods: solve direct problem, use some minimizing criteria, crack needs to be localized in advance;
- semi-explicit methods: localization through approximation of u in the whole domain D;
Methods of crack identification:

- iterative methods: solve direct problem, use some minimizing criteria, crack needs to be localized in advance;

- semi-explicit methods: localization through approximation of u in the whole domain D;

- method of meromorphic approximants introduced by L. Baratchart and E. B. Saff.
Idea of the Method

It can be shown that u has well-defined conjugate in $D \setminus \gamma$ and

$$\mathcal{F}(\xi) = u(\xi) - i \int_{\xi_0}^{\xi} \Phi ds, \quad \xi \in \Gamma.$$
It can be shown that u has well-defined conjugate in $D \setminus \gamma$ and

$$\mathcal{F}(\xi) = u(\xi) - i \int_{\xi_0}^{\xi} \Phi ds, \quad \xi \in \Gamma.$$

Further,

$$\mathcal{F}(z) = h(z) + \frac{1}{2\pi i} \int_{\gamma} \frac{(\mathcal{F}^- - \mathcal{F}^+)(t)}{z - t} dt, \quad z \in D \setminus \gamma,$$

where h is analytic in D and continuous in \overline{D}.
Motivation

Meromorphic Approximation

Rational Approximation

Uniqueness

Symmetric Contours

Idea of the Method

It can be shown that u has well-defined conjugate in $D \setminus \gamma$ and

\[
\mathcal{F}(\xi) = u(\xi) - i \int_{\xi_0}^{\xi} \Phi ds, \quad \xi \in \Gamma.
\]

Further,

\[
\mathcal{F}(z) = h(z) + \frac{1}{2\pi i} \int_{\gamma} \frac{(\mathcal{F}^- - \mathcal{F}^+)(t)}{z - t} dt, \quad z \in D \setminus \gamma,
\]

where h is analytic in D and continuous in \overline{D}.

One approximates \mathcal{F} on Γ by meromorphic in D functions and observes the asymptotic behavior of their poles as the number of poles growth large.
Idea of the Method
Let μ be a complex measure whose support, S_μ, is a subset of the unit disk, \mathbb{D}.

Define the **Cauchy transform** of μ by

$$\mathcal{F}(z) = \mathcal{F}(\mu; z) := \int \frac{d\mu(t)}{z - t}$$

and denote

$$D_\mathcal{F} := \mathbb{C} \setminus S_\mu.$$
Let h be a complex-valued function on the unit circle, \mathbb{T}. Then

$$h \in L^p \quad \text{iff} \quad \|h\|_p^p := \sum |h_j|^p < \infty, \quad h_j := \frac{1}{2\pi} \int_{\mathbb{T}} \xi^{-j} h(\xi) |d\xi|,$$

$$h \in L^\infty \quad \text{iff} \quad \|h\|_\infty := \operatorname{ess. sup}_{\mathbb{T}} |h| < \infty.$$
Let h be a complex-valued function on the unit circle, \mathbb{T}. Then

$$
\begin{align*}
\text{If } h & \in L^p \text{ iff } \|h\|_p^p := \sum |h_j|^p < \infty, \ h_j := \frac{1}{2\pi} \int_{\mathbb{T}} \xi^{-j} h(\xi) |d\xi|, \\
\text{If } h & \in L^\infty \text{ iff } \|h\|_\infty := \text{ess. sup}_{\mathbb{T}} |h| < \infty.
\end{align*}
$$

Let $p \in [2, \infty]$. The Hardy spaces are defined by

$$
\begin{align*}
H^p & := \{ h \in L^p : h_j = 0, \ j < 0 \}, \\
\overline{H}^p & := \{ h \in L^p : h_j = 0, \ j > -1 \}.
\end{align*}
$$
Fix $p \in [2, \infty]$ and $n \in \mathbb{N}$. The space of meromorphic functions of the degree n is defined as

$$H_n^p := H^p + \mathcal{R}_n,$$

where \mathcal{R}_n is the set of rational functions of type $(n - 1, n)$ with all their poles in \mathbb{D}.
Meromorphic approximation problem:

$$\| \mathcal{F} - g_n \|_p = \inf_{g \in H^n_p} \| \mathcal{F} - g \|_p.$$
Meromorphic approximation problem:

\[\| \mathcal{F} - g_n \|_p = \inf_{g \in H^p_n} \| \mathcal{F} - g \|_p. \]

This problem always admits a solution:

- **Adamjan, Arov, and Krein**\(^a\), \(p = \infty \);
- **Baratchart and Seyfert**\(^b\) & **Prokhorov**\(^c\), \(p \in [1, \infty) \).

\(^b\) An \(L^p \) analog of AAK theory for \(p \geq 2 \). *J. Funct. Anal.*, 191(1): 52-122, 2002

Let $g_n = h_n + r_n$, $h_n \in H^2$ and $r_n \in R_n$, be a best approximant for \mathcal{F} in MAP with $p = 2$. Then

$$\|\mathcal{F} - g_n\|_2^2 = \|h_n\|_2^2 + \|\mathcal{F} - r_n\|_2^2.$$
Let $g_n = h_n + r_n$, $h_n \in H^2$ and $r_n \in R_n$, be a best approximant for F in MAP with $p = 2$. Then

$$\|F - g_n\|_2^2 = \|h_n\|_2^2 + \|F - r_n\|_2^2.$$

Therefore, we arrive at

Rational Approximation Problem

$$\|F - r_n\|_2 = \inf_{r \in R_n} \|F - r\|_2.$$
We say that \(r \in \mathcal{R}_n \) is a \textbf{critical point} in RAP for \(\mathcal{F} \) if

\[
D\Theta(r) = 0,
\]

where \(\Theta(r) := \Theta_{\mathcal{F},n}(r) = \|\mathcal{F} - r\|_2^2 \).
We say that $r \in \mathcal{R}_n$ is a critical point in RAP for \mathcal{F} if

$$D\Theta(r) = 0,$$

where $\Theta(r) := \Theta_{\mathcal{F},n}(r) = \|\mathcal{F} - r\|_2^2$.

We say that r_n is irreducible critical point if r_n has exactly n poles. (It is known that all best and locally best rational approximants are always irreducible critical points.)
Let $r_n = p_{n-1}/q_n$ be a critical point in RAP to \mathcal{F}. Then

Rational function r_n interpolates \mathcal{F} at the reflections of the zeros of q_n with order 2 in the Hermite sense.
Let \(r_n = p_{n-1}/q_n \) be a critical point in RAP to \(\mathcal{F} \). Then

Rational function \(r_n \) interpolates \(\mathcal{F} \) at the reflections of the zeros of \(q_n \) with order 2 in the Hermite sense.

In other words, \(r_n \) is a multipoint Padé approximant with the implicitly defined interpolation set. Furthermore,

\[
\int t^j q_n(t) \frac{d\mu(t)}{\tilde{q}_n^2(t)} = 0, \quad j = 0, \ldots, n - 1,
\]

where \(\tilde{q}_n(z) = z^n q_n(1/\bar{z}) \) is the reciprocal polynomial.
Let F be an interval contained in $(-1,1)$ with the endpoints a and b. Set

- $w(z) = w(F, z) := \sqrt{(z - a)(z - b)}$ to be a holomorphic outside of F function such that $w(z)/z \to 1$ as $z \to \infty$. Then $w^+ = -w^-$ on F;
Let F be an interval contained in $(-1, 1)$ with the endpoints a and b. Set

- $w(z) = w(F, z) := \sqrt{(z - a)(z - b)}$ to be a holomorphic outside of F function such that $w(z)/z \to 1$ as $z \to \infty$. Then $w^+ = -w^-$ on F;

- ϕ to be the conformal map $\overline{\mathbb{C}} \setminus (F \cup F^{-1})$ onto an annulus $\{\rho \leq |z| \leq 1/\rho\}$ such that $\phi(\mathbb{T}) = \mathbb{T}$ and $\phi(\pm 1) = \pm 1$;
Let F be an interval contained in $(-1, 1)$ with the endpoints a and b. Set

- $w(z) = w(F, z) := \sqrt{(z - a)(z - b)}$ to be a holomorphic outside of F function such that $w(z)/z \to 1$ as $z \to \infty$. Then $w^+ = -w^-$ on F;

- ϕ to be the conformal map $\overline{\mathbb{C}} \setminus (F \cup F^{-1})$ onto an annulus $\{\rho \leq |z| \leq 1/\rho\}$ such that $\phi(\mathbb{T}) = \mathbb{T}$ and $\phi(\pm 1) = \pm 1$;

- μ to be of the form $d\mu(t) = \frac{h(t)dt}{w^+(t)}$, where h is a non-vanishing Dini-continuous function on F.

Then the following theorem takes place.
Theorem 1 (Baratchart and Y.)

Let $\{r_n\}$ be a sequence of irreducible critical points in RAT for F with μ as described. Then

$$(F - r_n)(z) = (D + o(1)) \frac{w^*(z)}{w(z)} \left(\frac{\rho}{\phi(z)} \right)^{2n} D_n(z)$$

locally uniformly in D_F, where

- $w^*(z) = zw(1/\bar{z})$;
- D is some constant;
- $\{D_n\}$ is a sequence of outer functions in $\overline{\mathbb{C}} \setminus (F \cup F^{-1})$;
- $|D_n|$ are uniformly bounded away from zero and infinity.
The proof of the above stated result utilizes:

- a priori knowledge of the behavior of the arguments of q_n on F (B, Küstner, Totika);
The proof of the above stated result utilizes:

- a priori knowledge of the behavior of the arguments of q_n on F (B, Küstner, Totika);

- formulae of strong asymptotics for polynomials satisfying non-Hermitian orthogonality relations with varying measures on arcs (last section and almost Aptekarevb);
The proof of the above stated result utilizes:

- a priori knowledge of the behavior of the arguments of q_n on F (B, Küstner, Totik\(^a\));

- formulae of strong asymptotics for polynomials satisfying non-Hermitian orthogonality relations with varying measures on arcs (last section and almost Aptekarev\(^b\));

- special connection (reciprocity) between the polynomial part of the weight, \tilde{q}_n^2, and the orthogonal polynomials q_n (B, Stahl, Wielonsky\(^c\)).

Numerical search of best rational approximants is a nonconvex optimization problem and therefore it often gets trapped in local minima. However, if there is only one local minimum, the descent algorithms converge.
A critical point r is called **nondegenerate** if $D^2\Theta(r)$ is a nonsingular quadratic form.
Definitions

- A critical point r is called **nondegenerate** if $D^2\Theta(r)$ is a nonsingular quadratic form.

- The **Morse index** of a nondegenerate critical point r, $M(r)$, is the number of negative eigenvalues of $D^2\Theta_F(r)$.

Theorem (Baratchart and Olivi)

If all the critical points are nondegenerate and neither of them interpolates F on T, then there are only finitely many such points and $\sum (-1)^{M(r)} = 1$.
Definitions

- A critical point \(r \) is called **nondegenerate** if \(D^2 \Theta(r) \) is a nonsingular quadratic form.

- The **Morse index** of a nondegenerate critical point \(r \), \(M(r) \), is the number of negative eigenvalues of \(D^2 \Theta_F(r) \).

Theorem (Baratchart and Olivi)\(^a\)

If all the critical points are nondegenerate and neither of them interpolates \(F \) on \(\mathbb{T} \), then there are only finitely many such points and

\[
\sum (-1)^{M(r_c)} = 1.
\]

Theorem (Adopted from Baratchart, Stahl, Wielonsky)\(^a\)

Let \(r_n \) be an irreducible critical point of order \(n \) that does not interpolate \(\mathcal{F} \) on \(\mathbb{T} \). If there exists a meromorphic function \(\Pi \) with at most of \(n - 1 \) poles in \(\mathbb{D} \), continuous on \(\mathbb{T} \), such that

\[
2|\mathcal{F} - r_n| \leq |\Pi - r_n| \quad \text{on} \quad \mathbb{T},
\]

and the winding number

\[
w_{\mathbb{T}}(\mathcal{F} - \Pi) \leq 1 - 2n,
\]

then \(r_n \) is a local minimum, i.e. \(D^2\Theta(r) \) is positive definite.

Set

- \(\varphi_i(z) = z - w(z); \)
- \(\varphi(z) = z + w(z); \)
- \(E_n \) to be a set of \(2n \) points in \(D := \mathbb{C} \setminus F; \)
- \(\Psi_n(z) := \prod_{e \in E_n} \frac{\varphi(z) - \varphi(e)}{1 - \varphi(z)\varphi(e)}; \)
Definition

A system of sets \(\{E_n\} \) is called **admissible** if, to each \(n \in \mathbb{N} \), there is a one-to-one correspondence \(\Delta_n : E_n \rightarrow E_n \) such that

\[
\sup_{n \in \mathbb{N}} \sum_{e \in E_n} \frac{|\tilde{\varphi}_i(e) - \Delta_n(\varphi_i(e))|}{(1 - |\varphi_i(e)||)(1 - |\Delta_n(\varphi_i(e))||)} < \infty
\]

and
A system of sets \(\{E_n\} \) is called **admissible** if, to each \(n \in \mathbb{N} \), there is a one-to-one correspondence \(\Delta_n : E_n \to E_n \) such that

\[
\sup_{n \in \mathbb{N}} \sum_{e \in E_n} \frac{|\bar{\varphi}(e) - \Delta_n(\varphi(e))|}{(1 - |\varphi(e)||)(1 - |\Delta_n(\varphi(e))||)} < \infty
\]

and

\[
\lim_{n \to \infty} \sum_{e \in E_n} (1 - |\varphi(e)|) = \infty.
\]
Note

- Admissibility implies that $\psi_n = o(1)$ in $\mathbb{C} \setminus F$ and $|\psi_n^{\pm}|$ are uniformly bounded above on F.
Note

- Admissibility implies that $\psi_n = o(1)$ in $\mathbb{C} \setminus F$ and $|\psi_n^\pm|$ are uniformly bounded above on F.

- Let r_n be an irreducible critical point in RAP to F of order n and let $\{\xi_{j,n}\}$ be its poles. Then $E_n^* := \{1/\bar{\xi}_{j,n}\}$ form an admissible sequence of sets. We shall denote associated “rational” functions by ψ_n^*.
Theorem 2 (Baratchart and Y.)

Let \(\{E_n\} \) be an admissible sequence of sets and \(\mathcal{F} \) be as in Theorem 1. Further, let \(\Pi_n \) be the diagonal multipoint Padé approximant of order \(n \) with the interpolation set \(E_n \). Then

\[
(\mathcal{F} - \Pi_n)(z) = (G + o(1)) \frac{\psi_n(z)}{w(z)} S_n(z)
\]

locally uniformly in \(D_{\mathcal{F}} \), where

- \(G \) is some constant;
- \(\{S_n\} \) is a sequence of outer functions in \(\mathbb{C} \setminus F \);
- \(|S_n| \) are uniformly bounded away from zero and infinity.
We take $\Pi = \Pi_{n-1}$ for some admissible interpolation scheme $\{E_n\}$. By the previous theorem $w(F - \Pi_{n-1}) = 1 - 2n$ whenever $E_n \subset \mathbb{C} \setminus \overline{D}$. Thus, points $\{E_n\}$ need to be chosen in $\mathbb{C} \setminus \overline{D}$ so

$$\left| 1 - \frac{F - \Pi_{n-1}}{F - r_n} \right| > 2 \quad \text{on} \quad \mathbb{T},$$
We take \(\Pi = \Pi_{n-1} \) for some admissible interpolation scheme \(\{E_n\} \). By the previous theorem \(w(\mathcal{F} - \Pi_{n-1}) = 1 - 2n \) whenever \(E_n \subset \mathbb{C} \setminus \overline{\mathbb{D}} \). Thus, points \(\{E_n\} \) need to be chosen in \(\mathbb{C} \setminus \overline{\mathbb{D}} \) so

\[
\left| 1 - \frac{\mathcal{F} - \Pi_{n-1}}{\mathcal{F} - r_n} \right| > 2 \quad \text{on} \quad \mathbb{T},
\]

i.e.

\[
\left| \Psi_{n-1}(z)/\Psi_n^*(z) \right| > 2.
\]
One can construct \(\{ E_n \} \) based on \(\{ E^*_n \} \) so that functions \(\log |\psi_{n-1}/\psi_n^*| \) approximate the Green potential of any signed measure of total mass 2 supported on \(F^{-1} \);
Facts (modified Baratchart, Stahl, Wielonsky)

- One can construct \(\{E_n\} \) based on \(\{E_n^*\} \) so that functions log \(|\psi_{n-1}/\psi_n^*| \) approximate the Green potential of any signed measure of total mass 2 supported on \(F^{-1} \);

- there exists a measure on \(F^{-1} \) whose Green potential satisfies \(|1 - G| > 2\) everywhere on \(\mathbb{T} \).
Facts (modified Baratchart, Stahl, Wielonsky)

- One can construct \(\{E_n\} \) based on \(\{E_n^*\} \) so that functions \(\log |\psi_{n-1}/\psi_n^*| \) approximate the Green potential of any signed measure of total mass 2 supported on \(F^{-1} \);

- there exists a measure on \(F^{-1} \) whose Green potential satisfies \(|1 - G| > 2 \) everywhere on \(\mathbb{T} \).

Theorem 3 (Baratchart and Y.)

Let \(\mathcal{F} \) be as in Theorem 1. Then for all \(n \) large enough there exists a unique critical point of order \(n \).
Let F be now any oriented smooth arc connecting ± 1. Set

- $w(z) := w(F, z)$ defined as before;
- $\varphi(z) = z + w(z)$;
- E_n to be a set of $2n$ points in $D := \mathbb{C} \setminus F$;
- v_n to be a polynomial with zeros at finite points of E_n;
- $\Psi_n(z) := \prod_{e \in E_n} \frac{\varphi(z) - \varphi(e)}{1 - \varphi(z)\varphi(e)}$;
- h to be a Dini-continuous non-vanishing function on F.

For \(h \) as above we define geometric mean:

\[
G_h := \exp \left\{ \int \log h(t) \frac{idt}{\pi w^+(t)} \right\}
\]
For h as above we define **geometric mean**:

$$G_h := \exp \left\{ \int \log h(t) \frac{idt}{\pi w^+(t)} \right\}$$

and **Szegő function**:

$$S_h(z) := \exp \left\{ \frac{w(z)}{2} \int \frac{\log(h(t)/G_h)}{t - z} \frac{idt}{\pi w^+(t)} \right\}.$$
For \(h \) as above we define geometric mean:

\[
G_h := \exp \left\{ \int \log h(t) \frac{idt}{\pi w^+(t)} \right\}
\]

and Szegő function:

\[
S_h(z) := \exp \left\{ \frac{w(z)}{2} \int \frac{\log(h(t)/G_h)}{t - z} \frac{idt}{\pi w^+(t)} \right\}.
\]

Then \(S_h \) is an outer function in \(\overline{\mathbb{C}} \setminus F \), \(S_h(\infty) = 1 \), and \(S^\pm_h \) are continuous functions on \(F \) such that

\[
h = G_h S^+_h S^-_h.
\]
Orthogonal polynomials:

\[\int_{F} t^{j} q_{n}(t) w_{n}(t) \frac{dt}{w^{+}(t)} = 0, \quad j = 0, \ldots, n - 1. \]
Orthogonal polynomials:

$$\int_{F} t^{j} q_{n}(t) w_{n}(t) \frac{dt}{w^{+}(t)} = 0, \quad j = 0, \ldots, n - 1.$$

Functions of second kind:

$$R_{n}(z) := \frac{1}{\pi i} \int_{F} \frac{q_{n}(t) w_{n}(t)}{t - z} \frac{dt}{w^{+}(t)}, \quad z \in \mathbb{C} \setminus F.$$
Orthogonal polynomials:

\[\int_F t^j q_n(t) w_n(t) \frac{dt}{w^+(t)} = 0, \quad j = 0, \ldots, n - 1. \]

Functions of second kind:

\[R_n(z) := \frac{1}{\pi i} \int_F \frac{q_n(t) w_n(t)}{t - z} \frac{dt}{w^+(t)}, \quad z \in \mathbb{C} \setminus F. \]

Weights:

\[w_n(t) = \frac{h(t)}{v_n(t)}, \]

where \(E_n \) (that is \(v_n \)) are such that \(\Psi_n = o(1) \) locally uniformly in \(D \) and \(|\psi_n^\pm| = O(1) \) uniformly on \(F \).
Theorem (Baratchart and Y.)

Let \(\{q_n\}_{n \in \mathbb{N}} \) be a sequence of polynomials as above.

Then each polynomials \(q_n \) has exact degree \(n \) for all \(n \) large enough and therefore can be normalized to be monic.

Under such a normalization we have

\[
\begin{cases}
q_n &= (1 + o(1))/S_n \\
R_n w &= (1 + o(1))\gamma_n S_n
\end{cases}
\]

locally uniformly in \(D \)

and

\[
\frac{q_n^2(t)w_n(t)}{\gamma_n w^+(t)} dt \overset{*}{\to} \frac{dt}{w^+(t)},
\]

where \(S_n := S_{w_n}(2/\varphi)^n \), \(\gamma_n := 2^{1-2n}G_{w_n} \), and \(\overset{*}{\to} \) stands for the weak* converges of measures.
Theorem (BY)

Further,

\[\begin{align*}
q_n &= \frac{(1 + d_n^-)}{S_n^+} + \frac{(1 + d_n^+)}{S_n^-} \\
(R_n w)^\pm &= (1 + d_n^\pm) \gamma_n S_n^\pm
\end{align*} \]

on \(F \),

where \(d_n^\pm \) are continuous on \(F \) and satisfy

\[
\int_F \frac{|d_n^-(t)|^p + |d_n^+(t)|^p}{\sqrt{|1 - t^2|}} |dt| \to 0 \text{ as } n \to \infty
\]

for any \(p \in [1, \infty) \).
smoothness of F can be reduced. Most likely we can handle quasismooth arcs without twisting points;
smoothness of F can be reduced. Most likely we can handle quasismooth arcs without twisting points;

function h, in fact, can vanish at a finite number of points in a "controlled manner";
Remarks

- smoothness of F can be reduced. Most likely we can handle quasismooth arcs without twisting points;

- function h, in fact, can vanish at a finite number of points in a "controlled manner";

- we can consider a compact family $\{h_n\}$ instead of h.
For any $\alpha \in \mathbb{R}$ denote

$$F_\alpha := \left\{ \frac{i\alpha + x}{1 + i\alpha x} : x \in [-1, 1] \right\}.$$

and for any point $e \in \mathbb{C}$ define

$$e^* = \frac{2i\alpha + (1 - \alpha^2)\bar{e}}{(1 - \alpha^2) + 2i\alpha \bar{e}}.$$

Then

$$e^* = e \quad \text{for any} \quad e \in F_{\alpha}^{-1}$$

and

$$|(\Psi_e \Psi_{e^*})^\pm| = 1 \quad \text{on} \quad F_{\alpha},$$

where

$$\Psi_e(z) := \frac{\varphi(z) - \varphi(e)}{1 - \varphi(z)\varphi(e)}.$$
Motivation

Meromorphic Approximation

Rational Approximation

Uniqueness

Symmetric Contours

Numerics

\[w_n(t) = \exp \left\{ \frac{2it - 1}{2i - t} \pi \right\} / (t - 2i)^{2n} \]

Zeros of \(q_{10} \) (black) and \(q_{15} \) (red).
\[w_n(t) = t^{-n}(t + 4i/3)^{-n} \]

Zeros of \(q_{10} \) (black), \(q_{15} \) (red), and \(q_{20} \) (blue).