# Asymptotics Uniqueness of Best Rational Approximants in $L^{2}(\mathbb{T})$ to Cauchy Transforms 

M. Yattselev<br>Project APICS, INRIA, Sophia Antipolis, France<br>joint work with<br>L. Baratchart<br>Project APICS, INRIA, Sophia Antipolis, France






Let $u$ be the equilibrium distribution of heat or current. Then

$$
\begin{cases}\Delta u=0 & \text { in } D \backslash \gamma \\ \frac{\partial u}{\partial n_{\Gamma}}=\Phi & \text { on } \Gamma:=\partial D \\ \frac{\partial u^{ \pm}}{\partial n_{\gamma}^{ \pm}}=0 & \text { on } \gamma \backslash\left\{\gamma_{0}, \gamma_{1}\right\}\end{cases}
$$

where $\Delta u$ is the Laplacian of $u$.

Methods of crack identification:

- iterative methods: solve direct problem, use some minimizing criteria, crack needs to be localized in advance;

Methods of crack identification:

- iterative methods: solve direct problem, use some minimizing criteria, crack needs to be localized in advance;
- semi-explicit methods: localization through approximation of $u$ in the whole domain $D$;

Methods of crack identification:

- iterative methods: solve direct problem, use some minimizing criteria, crack needs to be localized in advance;
- semi-explicit methods: localization through approximation of $u$ in the whole domain $D$;
- method of meromorphic approximants introduced by L. Baratchart and E. B. Saff.

It can be shown that $u$ has well-defined conjugate in $D \backslash \gamma$ and

$$
\mathcal{F}(\xi)=u(\xi)-i \int_{\xi_{0}}^{\xi} \Phi d s, \quad \xi \in \Gamma .
$$

It can be shown that $u$ has well-defined conjugate in $D \backslash \gamma$ and

$$
\mathcal{F}(\xi)=u(\xi)-i \int_{\xi_{0}}^{\xi} \Phi d s, \quad \xi \in \Gamma .
$$

Further,

$$
\mathcal{F}(z)=h(z)+\frac{1}{2 \pi i} \int_{\gamma} \frac{\left(\mathcal{F}^{-}-\mathcal{F}^{+}\right)(t)}{z-t} d t, \quad z \in D \backslash \gamma,
$$

where $h$ is analytic in $D$ and continuous in $\bar{D}$.

It can be shown that $u$ has well-defined conjugate in $D \backslash \gamma$ and

$$
\mathcal{F}(\xi)=u(\xi)-i \int_{\xi_{0}}^{\xi} \Phi d s, \quad \xi \in \Gamma .
$$

Further,

$$
\mathcal{F}(z)=h(z)+\frac{1}{2 \pi i} \int_{\gamma} \frac{\left(\mathcal{F}^{-}-\mathcal{F}^{+}\right)(t)}{z-t} d t, \quad z \in D \backslash \gamma,
$$

where $h$ is analytic in $D$ and continuous in $\bar{D}$.
One approximates $\mathcal{F}$ on $\Gamma$ by meromorphic in $D$ functions and observes the asymptotic behavior of their poles as the number of poles growth large.

## Idea of the Method



Let $\mu$ be a complex measure whose support, $S_{\mu}$, is a subset of the unit disk, $\mathbb{D}$.

Define the Cauchy transform of $\mu$ by

$$
\mathcal{F}(z)=\mathcal{F}(\mu ; z):=\int \frac{d \mu(t)}{z-t}
$$

and denote

$$
D_{\mathcal{F}}:=\overline{\mathbb{C}} \backslash S_{\mu}
$$

Let $h$ be a complex-valued function on the unit circle, $\mathbb{T}$. Then

$$
\begin{array}{ll}
h \in L^{p} & \text { iff } \quad\|h\|_{p}^{p}:=\sum\left|h_{j}\right|^{p}<\infty, h_{j}:=\frac{1}{2 \pi} \int_{\mathbb{T}} \xi^{-j} h(\xi)|d \xi|, \\
h \in L^{\infty} \quad \text { iff } \quad\|h\|_{\infty}:=\text { ess. } \sup _{\mathbb{T}}|h|<\infty .
\end{array}
$$

Let $h$ be a complex-valued function on the unit circle, $\mathbb{T}$. Then

$$
\begin{aligned}
& h \in L^{p} \quad \text { iff } \quad\|h\|_{p}^{p}:=\sum\left|h_{j}\right|^{p}<\infty, h_{j}:=\frac{1}{2 \pi} \int_{\mathbb{T}} \xi^{-j} h(\xi)|d \xi|, \\
& h \in L^{\infty} \quad \text { iff } \quad\|h\|_{\infty}:=\text { ess.sup }|h|<\infty \text {. } \\
& \mathbb{T}
\end{aligned}
$$

Let $p \in[2, \infty]$. The Hardy spaces are defined by

$$
\begin{aligned}
& H^{p}:=\left\{h \in L^{p}: h_{j}=0, j<0\right\}, \\
& \bar{H}_{0}^{p}:=\left\{h \in L^{p}: h_{j}=0, j>-1\right\} .
\end{aligned}
$$

Fix $p \in[2, \infty]$ and $n \in \mathbb{N}$. The space of meromorphic functions of the degree $n$ is defined as

$$
H_{n}^{p}:=H^{p}+\mathcal{R}_{n},
$$

where $\mathcal{R}_{n}$ is the set of rational functions of type ( $n-1, n$ ) with all their poles in $\mathbb{D}$.

## Meromorphic approximation problem:

$$
\left\|\mathcal{F}-g_{n}\right\|_{p}=\inf _{g \in H_{n}^{p}}\|\mathcal{F}-g\|_{p}
$$

## Meromorphic approximation problem:

$$
\left\|\mathcal{F}-g_{n}\right\|_{p}=\inf _{g \in H_{n}^{p}}\|\mathcal{F}-g\|_{p}
$$

This problem always admits a solution:

- Adamjan, Arov, and Krein ${ }^{2}$, $p=\infty$;
- Baratchart and Seyfert ${ }^{b}$ \& Prokhorov ${ }^{c}, p \in[1, \infty)$.

[^0]Let $g_{n}=h_{n}+r_{n}, h_{n} \in H^{2}$ and $r_{n} \in R_{n}$, be a best approximant for $\mathcal{F}$ in MAP with $p=2$. Then

$$
\left\|\mathcal{F}-g_{n}\right\|_{2}^{2}=\left\|h_{n}\right\|_{2}^{2}+\left\|\mathcal{F}-r_{n}\right\|_{2}^{2} .
$$

Let $g_{n}=h_{n}+r_{n}, h_{n} \in H^{2}$ and $r_{n} \in R_{n}$, be a best approximant for $\mathcal{F}$ in MAP with $p=2$. Then

$$
\left\|\mathcal{F}-g_{n}\right\|_{2}^{2}=\left\|h_{n}\right\|_{2}^{2}+\left\|\mathcal{F}-r_{n}\right\|_{2}^{2}
$$

Therefore, we arrive at

## Rational Approximation Problem

$$
\left\|\mathcal{F}-r_{n}\right\|_{2}=\inf _{r \in \mathcal{R}_{n}}\|\mathcal{F}-r\|_{2}
$$

## Definitions

- We say that $r \in \mathcal{R}_{n}$ is a critical point in RAP for $\mathcal{F}$ if

$$
\begin{array}{r}
D \Theta(r)=0 \\
\text { where } \Theta(r):=\Theta_{\mathcal{F}, n}(r)=\|\mathcal{F}-r\|_{2}^{2}
\end{array}
$$

## Definitions

- We say that $r \in \mathcal{R}_{n}$ is a critical point in RAP for $\mathcal{F}$ if

$$
D \Theta(r)=0
$$

where $\Theta(r):=\Theta_{\mathcal{F}, n}(r)=\|\mathcal{F}-r\|_{2}^{2}$.

- We say that $r_{n}$ is irreducible critical point if $r_{n}$ has exactly $n$ poles. (It is known that all best and locally best rational approximants are always irreducible critical points.)

Let $r_{n}=p_{n-1} / q_{n}$ be a critical point in RAP to $\mathcal{F}$. Then

Rational function $r_{n}$ interpolates $\mathcal{F}$ at the reflections of the zeros of $q_{n}$ with order 2 in the Hermite sense.

Let $r_{n}=p_{n-1} / q_{n}$ be a critical point in RAP to $\mathcal{F}$. Then
Rational function $r_{n}$ interpolates $\mathcal{F}$ at the reflections of the zeros of $q_{n}$ with order 2 in the Hermite sense.

In other words, $r_{n}$ is a multipoint Padé approximant with the implicitly defined interpolation set. Furthermore,

$$
\int t^{j} q_{n}(t) \frac{d \mu(t)}{\tilde{q}_{n}^{2}(t)}=0, \quad j=0, \ldots, n-1,
$$

where $\widetilde{q}_{n}(z)=z^{n} \overline{q_{n}(1 / \bar{z})}$ is the reciprocal polynomial.

Let $F$ be an interval contained in $(-1,1)$ with the endpoints a and $b$. Set

- $w(z)=w(F, z):=\sqrt{(z-a)(z-b)}$ to be a holomorphic outside of $F$ function such that $w(z) / z \rightarrow 1$ as $z \rightarrow \infty$.
Then $w^{+}=-w^{-}$on $F$;

Let $F$ be an interval contained in $(-1,1)$ with the endpoints a and $b$. Set

- $w(z)=w(F, z):=\sqrt{(z-a)(z-b)}$ to be a holomorphic outside of $F$ function such that $w(z) / z \rightarrow 1$ as $z \rightarrow \infty$. Then $w^{+}=-w^{-}$on $F$;
- $\phi$ to be the conformal map $\overline{\mathbb{C}} \backslash\left(F \cup F^{-1}\right)$ onto an annulus $\{\rho \leq|z| \leq 1 / \rho\}$ such that $\phi(\mathbb{T})=\mathbb{T}$ and $\phi( \pm 1)= \pm 1 ;$

Let $F$ be an interval contained in $(-1,1)$ with the endpoints a and $b$. Set

- $w(z)=w(F, z):=\sqrt{(z-a)(z-b)}$ to be a holomorphic outside of $F$ function such that $w(z) / z \rightarrow 1$ as $z \rightarrow \infty$.
Then $w^{+}=-w^{-}$on $F$;
- $\phi$ to be the conformal map $\overline{\mathbb{C}} \backslash\left(F \cup F^{-1}\right)$ onto an annulus $\{\rho \leq|z| \leq 1 / \rho\}$ such that $\phi(\mathbb{T})=\mathbb{T}$ and $\phi( \pm 1)= \pm 1$;
- $\mu$ to be of the form $d \mu(t)=\frac{h(t) d t}{w^{+}(t)}$, where $h$ is a non-vanishing Dini-continuous function on $F$.

Then the following theorem takes place.

## Theorem 1 (Baratchart and Y.)

Let $\left\{r_{n}\right\}$ be a sequence of irreducible critical points in RAT for $\mathcal{F}$ with $\mu$ as described. Then

$$
\left(\mathcal{F}-r_{n}\right)(z)=(\mathcal{D}+o(1)) \frac{w^{*}(z)}{w(z)}\left(\frac{\rho}{\phi(z)}\right)^{2 n} D_{n}(z)
$$

locally uniformly in $D_{\mathcal{F}}$, where

- $w^{*}(z)=z \overline{w(1 / \bar{z})}$;
- $\mathcal{D}$ is some constant;
- $\left\{D_{n}\right\}$ is a sequence of outer functions in $\overline{\mathbb{C}} \backslash\left(F \cup F^{-1}\right)$;
- $\left|D_{n}\right|$ are uniformly bounded away from zero and infinity.

The proof of the above stated result utilizes:

- a priori knowledge of the behavior of the arguments of $q_{n}$ on $F$ (B, Küstner, Totik ${ }^{\text {a }}$ );

The proof of the above stated result utilizes:

- a priori knowledge of the behavior of the arguments of $q_{n}$ on $F\left(B\right.$, Küstner, Totik ${ }^{a}$ );
- formulae of strong asymptotics for polynomials satisfying non-Hermitian orthogonality relations with varying measures on arcs (last section and almost Aptekarev ${ }^{\text {b }}$ );

The proof of the above stated result utilizes:

- a priori knowledge of the behavior of the arguments of $q_{n}$ on $F\left(B\right.$, Küstner, Totik ${ }^{a}$ );
- formulae of strong asymptotics for polynomials satisfying non-Hermitian orthogonality relations with varying measures on arcs (last section and almost Aptekarev ${ }^{\text {b }}$ );
- special connection (reciprocity) between the polynomial part of the weight, $\widetilde{q}_{n}^{2}$, and the orthogonal polynomials $q_{n}$ (B, Stahl, Wielonsky ${ }^{C}$ ).

[^1]Numerical search of best rational approximants is a nonconvex optimization problem and therefore it often gets trapped in local minima. However, if there is only one local minimum, the descent algorithms converge.

## Definitions

- A critical point $r$ is called nondegenerate if $D^{2} \Theta(r)$ is a nonsingular quadratic form.


## Definitions

- A critical point $r$ is called nondegenerate if $D^{2} \Theta(r)$ is a nonsingular quadratic form.
- The Morse index of a nondegenerate critical point $r, M(r)$, is the number of negative eigenvalues of $D^{2} \Theta_{\mathcal{F}}(r)$.


## Definitions

- A critical point $r$ is called nondegenerate if $D^{2} \Theta(r)$ is a nonsingular quadratic form.
- The Morse index of a nondegenerate critical point $r, M(r)$, is the number of negative eigenvalues of $D^{2} \Theta_{\mathcal{F}}(r)$.


## Theorem (Baratchart and Olivi) ${ }^{\text {a }}$

If all the critical points are nondegenerate and neither of them interpolates $\mathcal{F}$ on $\mathbb{T}$, then there are only finitely many such points and

$$
\sum(-1)^{M\left(r_{c}\right)}=1 .
$$

[^2]
## Theorem (Adopted from Baratchart, Stahl, Wielonsky)a

Let $r_{n}$ be an irreducible critical point of order $n$ that does not interpolate $\mathcal{F}$ on $\mathbb{T}$. If there exists a meromorphic function $\Pi$ with at most of $n-1$ poles in $\mathbb{D}$, continuous on $\mathbb{T}$, such that

$$
2\left|\mathcal{F}-r_{n}\right| \leq\left|\Pi-r_{n}\right| \text { on } \mathbb{T},
$$

and the winding number

$$
\mathbf{w}_{\mathbb{T}}(\mathcal{F}-\Pi) \leq 1-2 n,
$$

then $r_{n}$ is a local minimum, i.e. $D^{2} \Theta(r)$ is positive definite.

[^3]Set

- $\varphi_{i}(z)=z-w(z)$;
- $\varphi(z)=z+w(z)$;
- $E_{n}$ to be a set of $2 n$ points in $D:=\overline{\mathbb{C}} \backslash F$;
- $\Psi_{n}(z):=\prod_{e \in E_{n}} \frac{\varphi(z)-\varphi(e)}{1-\varphi(z) \varphi(e)} ;$


## Definition

A system of sets $\left\{E_{n}\right\}$ is called admissible if, to each $n \in \mathbb{N}$, there is a one-to-one correspondence $\Delta_{n}: E_{n} \rightarrow E_{n}$ such that

$$
\sup _{n \in \mathbb{N}} \sum_{e \in E_{n}} \frac{\left|\bar{\varphi}_{i}(e)-\Delta_{n}\left(\varphi_{i}(e)\right)\right|}{\left(1-\left|\varphi_{i}(e)\right|\right)\left(1-\left|\Delta_{n}\left(\varphi_{i}(e)\right)\right|\right)}<\infty
$$

and

## Definition

A system of sets $\left\{E_{n}\right\}$ is called admissible if, to each $n \in \mathbb{N}$, there is a one-to-one correspondence $\Delta_{n}: E_{n} \rightarrow E_{n}$ such that

$$
\sup _{n \in \mathbb{N}} \sum_{e \in E_{n}} \frac{\left|\bar{\varphi}_{i}(e)-\Delta_{n}\left(\varphi_{i}(e)\right)\right|}{\left(1-\left|\varphi_{i}(e)\right|\right)\left(1-\left|\Delta_{n}\left(\varphi_{i}(e)\right)\right|\right)}<\infty
$$

and

$$
\lim _{n \rightarrow \infty} \sum_{e \in E_{n}}\left(1-\left|\varphi_{i}(e)\right|\right)=\infty .
$$

## Note

- Admissibility implies that $\Psi_{n}=o(1)$ in $\mathbb{C} \backslash F$ and $\left|\Psi_{n}^{ \pm}\right|$are uniformly bounded above on $F$.


## Note

- Admissibility implies that $\Psi_{n}=O(1)$ in $\mathbb{C} \backslash F$ and $\left|\Psi_{n}^{ \pm}\right|$are uniformly bounded above on $F$.
- Let $r_{n}$ be an irreducible critical point in RAP to $\mathcal{F}$ of order $n$ and let $\left\{\xi_{j, n}\right\}$ be its poles. Then $E_{n}^{*}:=\left\{1 / \bar{\xi}_{j, n}\right\}$ form an admissible sequence of sets. We shall denote associated "rational" functions by $\Psi_{n}^{*}$.


## Theorem 2 (Baratchart and Y.)

Let $\left\{E_{n}\right\}$ be an admissible sequence of sets and $\mathcal{F}$ be as in Theorem 1. Further, let $\Pi_{n}$ be the diagonal multipoint Padé approximant of order $n$ with the interpolation set $E_{n}$. Then

$$
\left(\mathcal{F}-\Pi_{n}\right)(z)=(\mathcal{G}+o(1)) \frac{\Psi_{n}(z)}{w(z)} S_{n}(z)
$$

locally uniformly in $D_{\mathcal{F}}$, where

- $\mathcal{G}$ is some constant;
- $\left\{S_{n}\right\}$ is a sequence of outer functions in $\overline{\mathbb{C}} \backslash F$;
- $\left|S_{n}\right|$ are uniformly bounded away from zero and infinity.

We take $\Pi=\Pi_{n-1}$ for some admissible interpolation scheme $\left\{E_{n}\right\}$. By the previous theorem $\mathbf{w}\left(\mathcal{F}-\Pi_{n-1}\right)=1-2 n$ whenever $E_{n} \subset \mathbb{C} \backslash \overline{\mathbb{D}}$. Thus, points $\left\{E_{n}\right\}$ need to be chosen in $\mathbb{C} \backslash \overline{\mathbb{D}}$ so

$$
\left|1-\frac{\mathcal{F}-\Pi_{n-1}}{\mathcal{F}-r_{n}}\right|>2 \text { on } \mathbb{T},
$$

We take $\Pi=\Pi_{n-1}$ for some admissible interpolation scheme $\left\{E_{n}\right\}$. By the previous theorem $\mathbf{w}\left(\mathcal{F}-\Pi_{n-1}\right)=1-2 n$ whenever $E_{n} \subset \mathbb{C} \backslash \overline{\mathbb{D}}$. Thus, points $\left\{E_{n}\right\}$ need to be chosen in $\mathbb{C} \backslash \overline{\mathbb{D}}$ so

$$
\left|1-\frac{\mathcal{F}-\Pi_{n-1}}{\mathcal{F}-r_{n}}\right|>2 \text { on } \mathbb{T},
$$

i.e.

$$
\left|\Psi_{n-1}(z) / \Psi_{n}^{*}(z)\right|>2 .
$$

## Facts (modified Baratchart, Stahl, Wielonsky)

- One can construct $\left\{E_{n}\right\}$ based on $\left\{E_{n}^{*}\right\}$ so that functions $\log \left|\Psi_{n-1} / \Psi_{n}^{*}\right|$ approximate the Green potential of any signed measure of total mass 2 supported on $F^{-1}$;


## Facts (modified Baratchart, Stahl, Wielonsky)

- One can construct $\left\{E_{n}\right\}$ based on $\left\{E_{n}^{*}\right\}$ so that functions $\log \left|\Psi_{n-1} / \Psi_{n}^{*}\right|$ approximate the Green potential of any signed measure of total mass 2 supported on $F^{-1}$;
- there exists a measure on $F^{-1}$ whose Green potential satisfies $|1-G|>2$ everywhere on $\mathbb{T}$.


## Facts (modified Baratchart, Stahl, Wielonsky)

- One can construct $\left\{E_{n}\right\}$ based on $\left\{E_{n}^{*}\right\}$ so that functions $\log \left|\Psi_{n-1} / \Psi_{n}^{*}\right|$ approximate the Green potential of any signed measure of total mass 2 supported on $F^{-1}$;
- there exists a measure on $F^{-1}$ whose Green potential satisfies $|1-G|>2$ everywhere on $\mathbb{T}$.


## Theorem 3 (Baratchart and Y.)

Let $\mathcal{F}$ be as in Theorem 1. Then for all $n$ large enough there exists a unique critical point of order $n$.

Let $F$ be now any oriented smooth arc connecting $\pm 1$. Set

- $w(z):=w(F, z)$ defined as before;
- $\varphi(z)=z+w(z)$;
- $E_{n}$ to be a set of $2 n$ points in $D:=\overline{\mathbb{C}} \backslash F$;
- $v_{n}$ to be a polynomial with zeros at finite points of $E_{n}$;
- $\psi_{n}(z):=\prod_{e \in E_{n}} \frac{\varphi(z)-\varphi(e)}{1-\varphi(z) \varphi(e)} ;$
- $h$ to be a Dini-continuous non-vanishing function on $F$.

For $h$ as above we define geometric mean:

$$
G_{h}:=\exp \left\{\int \log h(t) \frac{i d t}{\pi W^{+}(t)}\right\}
$$

For $h$ as above we define geometric mean:

$$
G_{h}:=\exp \left\{\int \log h(t) \frac{i d t}{\pi w^{+}(t)}\right\}
$$

and Szegő function:

$$
S_{h}(z):=\exp \left\{\frac{w(z)}{2} \int \frac{\log \left(h(t) / G_{h}\right)}{t-z} \frac{i d t}{\pi w^{+}(t)}\right\}
$$

For $h$ as above we define geometric mean:

$$
G_{h}:=\exp \left\{\int \log h(t) \frac{i d t}{\pi w^{+}(t)}\right\}
$$

and Szegő function:

$$
S_{h}(z):=\exp \left\{\frac{w(z)}{2} \int \frac{\log \left(h(t) / G_{h}\right)}{t-z} \frac{i d t}{\pi w^{+}(t)}\right\} .
$$

Then $S_{h}$ is an outer function in $\overline{\mathbb{C}} \backslash F, S_{h}(\infty)=1$, and $S_{h}^{ \pm}$are continuous functions on $F$ such that

$$
h=G_{h} S_{h}^{+} S_{h}^{-} .
$$

Orthogonal polynomials:

$$
\int_{F} t^{j} q_{n}(t) w_{n}(t) \frac{d t}{w^{+}(t)}=0, \quad j=0, \ldots, n-1 .
$$

Orthogonal polynomials:

$$
\int_{F} t^{j} q_{n}(t) w_{n}(t) \frac{d t}{w^{+}(t)}=0, \quad j=0, \ldots, n-1 .
$$

Functions of second kind:

$$
R_{n}(z):=\frac{1}{\pi i} \int_{F} \frac{q_{n}(t) w_{n}(t)}{t-z} \frac{d t}{w^{+}(t)}, \quad z \in \overline{\mathbb{C}} \backslash F .
$$

Orthogonal polynomials:

$$
\int_{F} t^{j} q_{n}(t) w_{n}(t) \frac{d t}{w^{+}(t)}=0, \quad j=0, \ldots, n-1 .
$$

Functions of second kind:

$$
R_{n}(z):=\frac{1}{\pi i} \int_{F} \frac{q_{n}(t) w_{n}(t)}{t-z} \frac{d t}{w^{+}(t)}, \quad z \in \overline{\mathbb{C}} \backslash F .
$$

Weights:

$$
w_{n}(t)=\frac{h(t)}{v_{n}(t)}
$$

where $E_{n}$ (that is $v_{n}$ ) are such that $\Psi_{n}=o(1)$ locally uniformly in $D$ and $\left|\Psi_{n}^{ \pm}\right|=O(1)$ uniformly on $F$.

## Theorem (Baratchart and Y.)

Let $\left\{q_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of polynomials as above.
Then each polynomials $q_{n}$ has exact degree $n$ for all $n$ large enough and therefore can be normalized to be monic.
Under such a normalization we have

$$
\left\{\begin{array}{l}
q_{n}=(1+o(1)) / S_{n} \\
R_{n} w=(1+o(1)) \gamma_{n} S_{n}
\end{array}\right.
$$

locally uniformly in $D$
and

$$
\frac{q_{n}^{2}(t) w_{n}(t)}{\gamma_{n} w^{+}(t)} d t \stackrel{*}{\rightarrow} \frac{d t}{w^{+}(t)},
$$

where $S_{n}:=S_{w_{n}}(2 / \varphi)^{n}, \gamma_{n}:=2^{1-2 n} G_{w_{n}}$, and $\xrightarrow{*}$ stands for the weak* converges of measures.

## Theorem (BY)

Further,

$$
\left\{\begin{array}{ll}
q_{n} & =\left(1+d_{n}^{-}\right) / S_{n}^{+}+\left(1+d_{n}^{+}\right) / S_{n}^{-} \\
\left(R_{n} w\right)^{ \pm} & =\left(1+d_{n}^{ \pm}\right) \gamma_{n} S_{n}^{ \pm}
\end{array} \quad \text { on } F,\right.
$$

where $d_{n}^{ \pm}$are continuous on $F$ and satisfy

$$
\int_{F} \frac{\left|d_{n}^{-}(t)\right|^{p}+\left|d_{n}^{+}(t)\right|^{p}}{\sqrt{\left|1-t^{2}\right|}}|d t| \rightarrow 0 \text { as } n \rightarrow \infty
$$

for any $p \in[1, \infty)$.

## Remarks

- smoothness of $F$ can be reduced. Most likely we can handle quasismooth arcs without twisting points;


## Remarks

- smoothness of $F$ can be reduced. Most likely we can handle quasismooth arcs without twisting points;
- function $h$, in fact, can vanish at a finite number of points in a "controlled manner";


## Remarks

- smoothness of $F$ can be reduced. Most likely we can handle quasismooth arcs without twisting points;
- function $h$, in fact, can vanish at a finite number of points in a "controlled manner";
- we can consider a compact family $\left\{h_{n}\right\}$ instead of $h$.

For any $\alpha \in \mathbb{R}$ denote

$$
F_{\alpha}:=\left\{\frac{i \alpha+x}{1+i \alpha x}: x \in[-1,1]\right\} .
$$

and for any point $e \in \mathbb{C}$ define

$$
e^{*}=\frac{2 i \alpha+\left(1-\alpha^{2}\right) \bar{e}}{\left(1-\alpha^{2}\right)+2 i \alpha \bar{e}} .
$$

Then

$$
e^{*}=e \text { for any } e \in F_{\alpha}^{-1}
$$

and

$$
\left|\left(\Psi_{e} \psi_{e *}\right)^{ \pm}\right|=1 \quad \text { on } \quad F_{\alpha},
$$

where

$$
\Psi_{e}(z):=\frac{\varphi(z)-\varphi(e)}{1-\varphi(z) \varphi(e)} .
$$

$$
w_{n}(t)=\exp \left\{\frac{2 i t-1}{2 i-t} \pi\right\} /(t-2 i)^{2 n}
$$

Zeros of $q_{10}$ (black) and $q_{15}$ (red).

$$
w_{n}(t)=t^{-n}(t+4 i / 3)^{-n}
$$

Zeros of $q_{10}$ (black), $q_{15}$ (red), and $q_{20}$ (blue).


[^0]:    ${ }^{a}$ Analytic properties of Schmidt pairs for a Hankel operator on the generalized Schur-Takagi problem. Math. USSR Sb., 15: 31-73, 1971
    ${ }^{b}$ An $L^{p}$ analog of AAK theory for $p \geq 2$. J. Funct. Anal., 191(1): 52-122, 2002
    ${ }^{c}$ On $L^{p}$-generalization of a theorem of Adamyan, Arov, and Krein. Comput. Methods Funct. Theory, 1(2): 501-520, 2001

[^1]:    ${ }^{\text {a/Z }}$ Zero distribution via orthogonality. Ann. Inst. Fourier., 55(5): 1455-1499, 2005
    ${ }^{b}$ Sharp constants for rational approximations of analytic functions. Sb. Math., 193(1-2): 1-72, 2002
    ${ }^{c}$ Asymptotic error estimates for $L^{2}$ best rational approximants to Markov functions. J. Approx. Theory., 108: 53-96, 2001

[^2]:    ${ }^{a}$ Index of critical points in $I^{2}$-approximation. Systems Control Lett., 10: 167-174, 1988

[^3]:    ${ }^{a}$ Asymptotic uniqueness of best rational approximants of given degree to Markov functions in $L^{2}$ of the circle. Constr. Approx., 17: 103-138, 2001

